Analytical Approximate Solution of Nonlinear Differential Equation Governing Jeffery-Hamel Flow with High Magnetic Field by Adomian Decomposition Method

The magnetohydrodynamic Jeffery-Hamel flow is studied analytically. The traditional Navier-Stokes equation of fluid mechanics and Maxwell's electromagnetism governing equations reduce to nonlinear ordinary differential equations to model this problem. The analytical tool of Adomian decompositio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ISRN mathematical analysis 2011-01, Vol.2011 (2011), p.1-16
Hauptverfasser: Ganji, Ganji Dormiti, Sheikholeslami, M., Ashorynejad, H. R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 16
container_issue 2011
container_start_page 1
container_title ISRN mathematical analysis
container_volume 2011
creator Ganji, Ganji Dormiti
Sheikholeslami, M.
Ashorynejad, H. R.
description The magnetohydrodynamic Jeffery-Hamel flow is studied analytically. The traditional Navier-Stokes equation of fluid mechanics and Maxwell's electromagnetism governing equations reduce to nonlinear ordinary differential equations to model this problem. The analytical tool of Adomian decomposition method is used to solve this nonlinear problem. The velocity profile of the conductive fluid inside the divergent channel is studied for various values of Hartmann number. Results agree well with the numerical (Runge-Kutta method) results, tabulated in a table. The plots confirm that the method used is of high accuracy for different α, Ha, and Re numbers.
doi_str_mv 10.5402/2011/937830
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_922776901</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2592762691</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1990-5c5aed522716efe5892b8a10adb0b89dcab308b01ee11c71b1f2ece9517adc6b3</originalsourceid><addsrcrecordid>eNqF0E9PwjAYBvDFaCJBTp5NGo8apN3oth4JfzWgB_W8dN07KCnt6DZx38SPa2GGq720yfvL07yP590S_ESH2B_4mJABC6I4wBdex8cM94dhSC_Pbxpde72y3GJ3YoeDsOP9jDRXTSUFV2hUFNZ8yx2vAL0bVVfSaGRy9Gq0khq4RROZ52BBV9Lx6b7mJzI3X2C11Gv0Asd501_wHSg0U-aADrLaoIVcb9CKrzW4n9BMgspQ2qBRZnaSazQBYXaFKeUpbgXVxmQ33lXOVQm9v7vrfc6mH-NFf_k2fx6Pln1BmNuKCsoho74fkRByoDHz05gTzLMUpzHLBE8DHKeYABAiIpKS3AcBjJKIZyJMg6533-a63fc1lFWyNbV1pZQJc6lRyDBx6LFFwpqytJAnhXU92SYhODmWnxzLT9rynX5o9UbqjB_kP_iuxeAI5PyMKWYho8Evr7CP9A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>922776901</pqid></control><display><type>article</type><title>Analytical Approximate Solution of Nonlinear Differential Equation Governing Jeffery-Hamel Flow with High Magnetic Field by Adomian Decomposition Method</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Ganji, Ganji Dormiti ; Sheikholeslami, M. ; Ashorynejad, H. R.</creator><contributor>Mucha, P. B. ; Garcea, G.</contributor><creatorcontrib>Ganji, Ganji Dormiti ; Sheikholeslami, M. ; Ashorynejad, H. R. ; Mucha, P. B. ; Garcea, G.</creatorcontrib><description>The magnetohydrodynamic Jeffery-Hamel flow is studied analytically. The traditional Navier-Stokes equation of fluid mechanics and Maxwell's electromagnetism governing equations reduce to nonlinear ordinary differential equations to model this problem. The analytical tool of Adomian decomposition method is used to solve this nonlinear problem. The velocity profile of the conductive fluid inside the divergent channel is studied for various values of Hartmann number. Results agree well with the numerical (Runge-Kutta method) results, tabulated in a table. The plots confirm that the method used is of high accuracy for different α, Ha, and Re numbers.</description><identifier>ISSN: 2090-4657</identifier><identifier>EISSN: 2090-4665</identifier><identifier>DOI: 10.5402/2011/937830</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Puplishing Corporation</publisher><subject>Cybernetics ; Fluid dynamics ; Methods ; Partial differential equations ; Reynolds number ; Studies</subject><ispartof>ISRN mathematical analysis, 2011-01, Vol.2011 (2011), p.1-16</ispartof><rights>Copyright © 2011 D. D. Ganji et al.</rights><rights>Copyright © 2011 D. D. Ganji et al. D. D. Ganji et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1990-5c5aed522716efe5892b8a10adb0b89dcab308b01ee11c71b1f2ece9517adc6b3</citedby><cites>FETCH-LOGICAL-c1990-5c5aed522716efe5892b8a10adb0b89dcab308b01ee11c71b1f2ece9517adc6b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930</link.rule.ids></links><search><contributor>Mucha, P. B.</contributor><contributor>Garcea, G.</contributor><creatorcontrib>Ganji, Ganji Dormiti</creatorcontrib><creatorcontrib>Sheikholeslami, M.</creatorcontrib><creatorcontrib>Ashorynejad, H. R.</creatorcontrib><title>Analytical Approximate Solution of Nonlinear Differential Equation Governing Jeffery-Hamel Flow with High Magnetic Field by Adomian Decomposition Method</title><title>ISRN mathematical analysis</title><description>The magnetohydrodynamic Jeffery-Hamel flow is studied analytically. The traditional Navier-Stokes equation of fluid mechanics and Maxwell's electromagnetism governing equations reduce to nonlinear ordinary differential equations to model this problem. The analytical tool of Adomian decomposition method is used to solve this nonlinear problem. The velocity profile of the conductive fluid inside the divergent channel is studied for various values of Hartmann number. Results agree well with the numerical (Runge-Kutta method) results, tabulated in a table. The plots confirm that the method used is of high accuracy for different α, Ha, and Re numbers.</description><subject>Cybernetics</subject><subject>Fluid dynamics</subject><subject>Methods</subject><subject>Partial differential equations</subject><subject>Reynolds number</subject><subject>Studies</subject><issn>2090-4657</issn><issn>2090-4665</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqF0E9PwjAYBvDFaCJBTp5NGo8apN3oth4JfzWgB_W8dN07KCnt6DZx38SPa2GGq720yfvL07yP590S_ESH2B_4mJABC6I4wBdex8cM94dhSC_Pbxpde72y3GJ3YoeDsOP9jDRXTSUFV2hUFNZ8yx2vAL0bVVfSaGRy9Gq0khq4RROZ52BBV9Lx6b7mJzI3X2C11Gv0Asd501_wHSg0U-aADrLaoIVcb9CKrzW4n9BMgspQ2qBRZnaSazQBYXaFKeUpbgXVxmQ33lXOVQm9v7vrfc6mH-NFf_k2fx6Pln1BmNuKCsoho74fkRByoDHz05gTzLMUpzHLBE8DHKeYABAiIpKS3AcBjJKIZyJMg6533-a63fc1lFWyNbV1pZQJc6lRyDBx6LFFwpqytJAnhXU92SYhODmWnxzLT9rynX5o9UbqjB_kP_iuxeAI5PyMKWYho8Evr7CP9A</recordid><startdate>20110101</startdate><enddate>20110101</enddate><creator>Ganji, Ganji Dormiti</creator><creator>Sheikholeslami, M.</creator><creator>Ashorynejad, H. R.</creator><general>Hindawi Puplishing Corporation</general><general>International Scholarly Research Network</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M2O</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20110101</creationdate><title>Analytical Approximate Solution of Nonlinear Differential Equation Governing Jeffery-Hamel Flow with High Magnetic Field by Adomian Decomposition Method</title><author>Ganji, Ganji Dormiti ; Sheikholeslami, M. ; Ashorynejad, H. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1990-5c5aed522716efe5892b8a10adb0b89dcab308b01ee11c71b1f2ece9517adc6b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Cybernetics</topic><topic>Fluid dynamics</topic><topic>Methods</topic><topic>Partial differential equations</topic><topic>Reynolds number</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ganji, Ganji Dormiti</creatorcontrib><creatorcontrib>Sheikholeslami, M.</creatorcontrib><creatorcontrib>Ashorynejad, H. R.</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>ISRN mathematical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ganji, Ganji Dormiti</au><au>Sheikholeslami, M.</au><au>Ashorynejad, H. R.</au><au>Mucha, P. B.</au><au>Garcea, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analytical Approximate Solution of Nonlinear Differential Equation Governing Jeffery-Hamel Flow with High Magnetic Field by Adomian Decomposition Method</atitle><jtitle>ISRN mathematical analysis</jtitle><date>2011-01-01</date><risdate>2011</risdate><volume>2011</volume><issue>2011</issue><spage>1</spage><epage>16</epage><pages>1-16</pages><issn>2090-4657</issn><eissn>2090-4665</eissn><abstract>The magnetohydrodynamic Jeffery-Hamel flow is studied analytically. The traditional Navier-Stokes equation of fluid mechanics and Maxwell's electromagnetism governing equations reduce to nonlinear ordinary differential equations to model this problem. The analytical tool of Adomian decomposition method is used to solve this nonlinear problem. The velocity profile of the conductive fluid inside the divergent channel is studied for various values of Hartmann number. Results agree well with the numerical (Runge-Kutta method) results, tabulated in a table. The plots confirm that the method used is of high accuracy for different α, Ha, and Re numbers.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Puplishing Corporation</pub><doi>10.5402/2011/937830</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2090-4657
ispartof ISRN mathematical analysis, 2011-01, Vol.2011 (2011), p.1-16
issn 2090-4657
2090-4665
language eng
recordid cdi_proquest_journals_922776901
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Cybernetics
Fluid dynamics
Methods
Partial differential equations
Reynolds number
Studies
title Analytical Approximate Solution of Nonlinear Differential Equation Governing Jeffery-Hamel Flow with High Magnetic Field by Adomian Decomposition Method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T02%3A35%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analytical%20Approximate%20Solution%20of%20Nonlinear%20Differential%20Equation%20Governing%20Jeffery-Hamel%20Flow%20with%20High%20Magnetic%20Field%20by%20Adomian%20Decomposition%20Method&rft.jtitle=ISRN%20mathematical%20analysis&rft.au=Ganji,%20Ganji%20Dormiti&rft.date=2011-01-01&rft.volume=2011&rft.issue=2011&rft.spage=1&rft.epage=16&rft.pages=1-16&rft.issn=2090-4657&rft.eissn=2090-4665&rft_id=info:doi/10.5402/2011/937830&rft_dat=%3Cproquest_cross%3E2592762691%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=922776901&rft_id=info:pmid/&rfr_iscdi=true