Analysis of the Cell Vertex Finite Volume Method for the Cauchy-Riemann Equations

This paper initiates a study of finite volume methods for linear first-order elliptic systems by performing a stability and convergence analysis of the cell vertex approximation of the Cauchy-Riemann equations. The approach is based on reformulating the scheme as a Petrov-Galerkin finite element met...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on numerical analysis 1997-10, Vol.34 (5), p.2043-2062
Hauptverfasser: Vanmaele, M., Morton, K. W., Suli, E., Borzi, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper initiates a study of finite volume methods for linear first-order elliptic systems by performing a stability and convergence analysis of the cell vertex approximation of the Cauchy-Riemann equations. The approach is based on reformulating the scheme as a Petrov-Galerkin finite element method with continuous bilinear trial functions and piecewise constant test functions. Optimal error bounds are derived in a mesh-dependent norm, and the counting problem which may occur due to geometry and boundary conditions is considered.
ISSN:0036-1429
1095-7170
DOI:10.1137/S0036142994276384