Numerical Methods in the Weak Sense for Stochastic Differential Equations with Small Noise

We propose a new approach to constructing weak numerical methods for finding solutions to stochastic systems with small noise. For these methods we prove an error estimate in terms of products hiεj(h is a time increment, ε is a small parameter). We derive various efficient weak schemes for systems w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on numerical analysis 1997-12, Vol.34 (6), p.2142-2167
Hauptverfasser: Milstein, G. N., M. V. Tret'Yakov
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2167
container_issue 6
container_start_page 2142
container_title SIAM journal on numerical analysis
container_volume 34
creator Milstein, G. N.
M. V. Tret'Yakov
description We propose a new approach to constructing weak numerical methods for finding solutions to stochastic systems with small noise. For these methods we prove an error estimate in terms of products hiεj(h is a time increment, ε is a small parameter). We derive various efficient weak schemes for systems with small noise and study the Talay-Tubaro expansion of their global error. An efficient approach to reducing the Monte-Carlo error is presented. Some of the proposed methods are tested by calculating the Lyapunov exponent of a linear system with small noise.
doi_str_mv 10.1137/S0036142996278967
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_922687084</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2951943</jstor_id><sourcerecordid>2951943</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-8729a1f51a87b4701df7d35140c0c69d81b3603c9b022f89646dffc7abeab2e53</originalsourceid><addsrcrecordid>eNplkFFLwzAUhYMoOKc_QPAh-F7NTdqmeZS5qTDnQxXBl5KmCc3smi1JEf-9HRNffLpczvnu5RyELoHcADB-WxLCckipEDnlhcj5EZoAEVnCgZNjNNnLyV4_RWchrMm4F8Am6GM1bLS3Snb4WcfWNQHbHsdW43ctP3Gp-6CxcR6X0alWhmgVvrfGaK_7aEdqvhtktK4P-MvGFpcb2XV45WzQ5-jEyC7oi985RW-L-evsMVm-PDzN7paJYiyNScGpkGAykAWvU06gMbxhGaREEZWLpoCa5YQpURNKzRgtzRtjFJe1ljXVGZui68PdrXe7QYdYrd3g-_FlJSjNC06KdDTBwaS8C8FrU2293Uj_XQGp9g1W_xocmasDsw7R-T-AigxEytgPSZNsew</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>922687084</pqid></control><display><type>article</type><title>Numerical Methods in the Weak Sense for Stochastic Differential Equations with Small Noise</title><source>SIAM Journals Online</source><source>JSTOR Mathematics &amp; Statistics</source><source>Jstor Complete Legacy</source><creator>Milstein, G. N. ; M. V. Tret'Yakov</creator><creatorcontrib>Milstein, G. N. ; M. V. Tret'Yakov</creatorcontrib><description>We propose a new approach to constructing weak numerical methods for finding solutions to stochastic systems with small noise. For these methods we prove an error estimate in terms of products hiεj(h is a time increment, ε is a small parameter). We derive various efficient weak schemes for systems with small noise and study the Talay-Tubaro expansion of their global error. An efficient approach to reducing the Monte-Carlo error is presented. Some of the proposed methods are tested by calculating the Lyapunov exponent of a linear system with small noise.</description><identifier>ISSN: 0036-1429</identifier><identifier>EISSN: 1095-7170</identifier><identifier>DOI: 10.1137/S0036142996278967</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Approximation ; Coefficients ; Computer simulation ; Differential equations ; Differentials ; Error rates ; Estimation methods ; Human error ; Inequality ; Methods ; Noise ; Numerical analysis ; Numerical methods ; Random variables ; Runge Kutta method</subject><ispartof>SIAM journal on numerical analysis, 1997-12, Vol.34 (6), p.2142-2167</ispartof><rights>Copyright 1997 Society for Industrial and Applied Mathematics</rights><rights>[Copyright] © 1997 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-8729a1f51a87b4701df7d35140c0c69d81b3603c9b022f89646dffc7abeab2e53</citedby><cites>FETCH-LOGICAL-c334t-8729a1f51a87b4701df7d35140c0c69d81b3603c9b022f89646dffc7abeab2e53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2951943$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2951943$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,3170,27903,27904,57995,57999,58228,58232</link.rule.ids></links><search><creatorcontrib>Milstein, G. N.</creatorcontrib><creatorcontrib>M. V. Tret'Yakov</creatorcontrib><title>Numerical Methods in the Weak Sense for Stochastic Differential Equations with Small Noise</title><title>SIAM journal on numerical analysis</title><description>We propose a new approach to constructing weak numerical methods for finding solutions to stochastic systems with small noise. For these methods we prove an error estimate in terms of products hiεj(h is a time increment, ε is a small parameter). We derive various efficient weak schemes for systems with small noise and study the Talay-Tubaro expansion of their global error. An efficient approach to reducing the Monte-Carlo error is presented. Some of the proposed methods are tested by calculating the Lyapunov exponent of a linear system with small noise.</description><subject>Approximation</subject><subject>Coefficients</subject><subject>Computer simulation</subject><subject>Differential equations</subject><subject>Differentials</subject><subject>Error rates</subject><subject>Estimation methods</subject><subject>Human error</subject><subject>Inequality</subject><subject>Methods</subject><subject>Noise</subject><subject>Numerical analysis</subject><subject>Numerical methods</subject><subject>Random variables</subject><subject>Runge Kutta method</subject><issn>0036-1429</issn><issn>1095-7170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNplkFFLwzAUhYMoOKc_QPAh-F7NTdqmeZS5qTDnQxXBl5KmCc3smi1JEf-9HRNffLpczvnu5RyELoHcADB-WxLCckipEDnlhcj5EZoAEVnCgZNjNNnLyV4_RWchrMm4F8Am6GM1bLS3Snb4WcfWNQHbHsdW43ctP3Gp-6CxcR6X0alWhmgVvrfGaK_7aEdqvhtktK4P-MvGFpcb2XV45WzQ5-jEyC7oi985RW-L-evsMVm-PDzN7paJYiyNScGpkGAykAWvU06gMbxhGaREEZWLpoCa5YQpURNKzRgtzRtjFJe1ljXVGZui68PdrXe7QYdYrd3g-_FlJSjNC06KdDTBwaS8C8FrU2293Uj_XQGp9g1W_xocmasDsw7R-T-AigxEytgPSZNsew</recordid><startdate>19971201</startdate><enddate>19971201</enddate><creator>Milstein, G. N.</creator><creator>M. V. Tret'Yakov</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>19971201</creationdate><title>Numerical Methods in the Weak Sense for Stochastic Differential Equations with Small Noise</title><author>Milstein, G. N. ; M. V. Tret'Yakov</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-8729a1f51a87b4701df7d35140c0c69d81b3603c9b022f89646dffc7abeab2e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Approximation</topic><topic>Coefficients</topic><topic>Computer simulation</topic><topic>Differential equations</topic><topic>Differentials</topic><topic>Error rates</topic><topic>Estimation methods</topic><topic>Human error</topic><topic>Inequality</topic><topic>Methods</topic><topic>Noise</topic><topic>Numerical analysis</topic><topic>Numerical methods</topic><topic>Random variables</topic><topic>Runge Kutta method</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Milstein, G. N.</creatorcontrib><creatorcontrib>M. V. Tret'Yakov</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database (ProQuest)</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on numerical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Milstein, G. N.</au><au>M. V. Tret'Yakov</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical Methods in the Weak Sense for Stochastic Differential Equations with Small Noise</atitle><jtitle>SIAM journal on numerical analysis</jtitle><date>1997-12-01</date><risdate>1997</risdate><volume>34</volume><issue>6</issue><spage>2142</spage><epage>2167</epage><pages>2142-2167</pages><issn>0036-1429</issn><eissn>1095-7170</eissn><abstract>We propose a new approach to constructing weak numerical methods for finding solutions to stochastic systems with small noise. For these methods we prove an error estimate in terms of products hiεj(h is a time increment, ε is a small parameter). We derive various efficient weak schemes for systems with small noise and study the Talay-Tubaro expansion of their global error. An efficient approach to reducing the Monte-Carlo error is presented. Some of the proposed methods are tested by calculating the Lyapunov exponent of a linear system with small noise.</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/S0036142996278967</doi><tpages>26</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0036-1429
ispartof SIAM journal on numerical analysis, 1997-12, Vol.34 (6), p.2142-2167
issn 0036-1429
1095-7170
language eng
recordid cdi_proquest_journals_922687084
source SIAM Journals Online; JSTOR Mathematics & Statistics; Jstor Complete Legacy
subjects Approximation
Coefficients
Computer simulation
Differential equations
Differentials
Error rates
Estimation methods
Human error
Inequality
Methods
Noise
Numerical analysis
Numerical methods
Random variables
Runge Kutta method
title Numerical Methods in the Weak Sense for Stochastic Differential Equations with Small Noise
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T09%3A50%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20Methods%20in%20the%20Weak%20Sense%20for%20Stochastic%20Differential%20Equations%20with%20Small%20Noise&rft.jtitle=SIAM%20journal%20on%20numerical%20analysis&rft.au=Milstein,%20G.%20N.&rft.date=1997-12-01&rft.volume=34&rft.issue=6&rft.spage=2142&rft.epage=2167&rft.pages=2142-2167&rft.issn=0036-1429&rft.eissn=1095-7170&rft_id=info:doi/10.1137/S0036142996278967&rft_dat=%3Cjstor_proqu%3E2951943%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=922687084&rft_id=info:pmid/&rft_jstor_id=2951943&rfr_iscdi=true