Numerical Methods in the Weak Sense for Stochastic Differential Equations with Small Noise
We propose a new approach to constructing weak numerical methods for finding solutions to stochastic systems with small noise. For these methods we prove an error estimate in terms of products hiεj(h is a time increment, ε is a small parameter). We derive various efficient weak schemes for systems w...
Gespeichert in:
Veröffentlicht in: | SIAM journal on numerical analysis 1997-12, Vol.34 (6), p.2142-2167 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2167 |
---|---|
container_issue | 6 |
container_start_page | 2142 |
container_title | SIAM journal on numerical analysis |
container_volume | 34 |
creator | Milstein, G. N. M. V. Tret'Yakov |
description | We propose a new approach to constructing weak numerical methods for finding solutions to stochastic systems with small noise. For these methods we prove an error estimate in terms of products hiεj(h is a time increment, ε is a small parameter). We derive various efficient weak schemes for systems with small noise and study the Talay-Tubaro expansion of their global error. An efficient approach to reducing the Monte-Carlo error is presented. Some of the proposed methods are tested by calculating the Lyapunov exponent of a linear system with small noise. |
doi_str_mv | 10.1137/S0036142996278967 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_922687084</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2951943</jstor_id><sourcerecordid>2951943</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-8729a1f51a87b4701df7d35140c0c69d81b3603c9b022f89646dffc7abeab2e53</originalsourceid><addsrcrecordid>eNplkFFLwzAUhYMoOKc_QPAh-F7NTdqmeZS5qTDnQxXBl5KmCc3smi1JEf-9HRNffLpczvnu5RyELoHcADB-WxLCckipEDnlhcj5EZoAEVnCgZNjNNnLyV4_RWchrMm4F8Am6GM1bLS3Snb4WcfWNQHbHsdW43ctP3Gp-6CxcR6X0alWhmgVvrfGaK_7aEdqvhtktK4P-MvGFpcb2XV45WzQ5-jEyC7oi985RW-L-evsMVm-PDzN7paJYiyNScGpkGAykAWvU06gMbxhGaREEZWLpoCa5YQpURNKzRgtzRtjFJe1ljXVGZui68PdrXe7QYdYrd3g-_FlJSjNC06KdDTBwaS8C8FrU2293Uj_XQGp9g1W_xocmasDsw7R-T-AigxEytgPSZNsew</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>922687084</pqid></control><display><type>article</type><title>Numerical Methods in the Weak Sense for Stochastic Differential Equations with Small Noise</title><source>SIAM Journals Online</source><source>JSTOR Mathematics & Statistics</source><source>Jstor Complete Legacy</source><creator>Milstein, G. N. ; M. V. Tret'Yakov</creator><creatorcontrib>Milstein, G. N. ; M. V. Tret'Yakov</creatorcontrib><description>We propose a new approach to constructing weak numerical methods for finding solutions to stochastic systems with small noise. For these methods we prove an error estimate in terms of products hiεj(h is a time increment, ε is a small parameter). We derive various efficient weak schemes for systems with small noise and study the Talay-Tubaro expansion of their global error. An efficient approach to reducing the Monte-Carlo error is presented. Some of the proposed methods are tested by calculating the Lyapunov exponent of a linear system with small noise.</description><identifier>ISSN: 0036-1429</identifier><identifier>EISSN: 1095-7170</identifier><identifier>DOI: 10.1137/S0036142996278967</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Approximation ; Coefficients ; Computer simulation ; Differential equations ; Differentials ; Error rates ; Estimation methods ; Human error ; Inequality ; Methods ; Noise ; Numerical analysis ; Numerical methods ; Random variables ; Runge Kutta method</subject><ispartof>SIAM journal on numerical analysis, 1997-12, Vol.34 (6), p.2142-2167</ispartof><rights>Copyright 1997 Society for Industrial and Applied Mathematics</rights><rights>[Copyright] © 1997 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-8729a1f51a87b4701df7d35140c0c69d81b3603c9b022f89646dffc7abeab2e53</citedby><cites>FETCH-LOGICAL-c334t-8729a1f51a87b4701df7d35140c0c69d81b3603c9b022f89646dffc7abeab2e53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2951943$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2951943$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,3170,27903,27904,57995,57999,58228,58232</link.rule.ids></links><search><creatorcontrib>Milstein, G. N.</creatorcontrib><creatorcontrib>M. V. Tret'Yakov</creatorcontrib><title>Numerical Methods in the Weak Sense for Stochastic Differential Equations with Small Noise</title><title>SIAM journal on numerical analysis</title><description>We propose a new approach to constructing weak numerical methods for finding solutions to stochastic systems with small noise. For these methods we prove an error estimate in terms of products hiεj(h is a time increment, ε is a small parameter). We derive various efficient weak schemes for systems with small noise and study the Talay-Tubaro expansion of their global error. An efficient approach to reducing the Monte-Carlo error is presented. Some of the proposed methods are tested by calculating the Lyapunov exponent of a linear system with small noise.</description><subject>Approximation</subject><subject>Coefficients</subject><subject>Computer simulation</subject><subject>Differential equations</subject><subject>Differentials</subject><subject>Error rates</subject><subject>Estimation methods</subject><subject>Human error</subject><subject>Inequality</subject><subject>Methods</subject><subject>Noise</subject><subject>Numerical analysis</subject><subject>Numerical methods</subject><subject>Random variables</subject><subject>Runge Kutta method</subject><issn>0036-1429</issn><issn>1095-7170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNplkFFLwzAUhYMoOKc_QPAh-F7NTdqmeZS5qTDnQxXBl5KmCc3smi1JEf-9HRNffLpczvnu5RyELoHcADB-WxLCckipEDnlhcj5EZoAEVnCgZNjNNnLyV4_RWchrMm4F8Am6GM1bLS3Snb4WcfWNQHbHsdW43ctP3Gp-6CxcR6X0alWhmgVvrfGaK_7aEdqvhtktK4P-MvGFpcb2XV45WzQ5-jEyC7oi985RW-L-evsMVm-PDzN7paJYiyNScGpkGAykAWvU06gMbxhGaREEZWLpoCa5YQpURNKzRgtzRtjFJe1ljXVGZui68PdrXe7QYdYrd3g-_FlJSjNC06KdDTBwaS8C8FrU2293Uj_XQGp9g1W_xocmasDsw7R-T-AigxEytgPSZNsew</recordid><startdate>19971201</startdate><enddate>19971201</enddate><creator>Milstein, G. N.</creator><creator>M. V. Tret'Yakov</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>19971201</creationdate><title>Numerical Methods in the Weak Sense for Stochastic Differential Equations with Small Noise</title><author>Milstein, G. N. ; M. V. Tret'Yakov</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-8729a1f51a87b4701df7d35140c0c69d81b3603c9b022f89646dffc7abeab2e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Approximation</topic><topic>Coefficients</topic><topic>Computer simulation</topic><topic>Differential equations</topic><topic>Differentials</topic><topic>Error rates</topic><topic>Estimation methods</topic><topic>Human error</topic><topic>Inequality</topic><topic>Methods</topic><topic>Noise</topic><topic>Numerical analysis</topic><topic>Numerical methods</topic><topic>Random variables</topic><topic>Runge Kutta method</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Milstein, G. N.</creatorcontrib><creatorcontrib>M. V. Tret'Yakov</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database (ProQuest)</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on numerical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Milstein, G. N.</au><au>M. V. Tret'Yakov</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical Methods in the Weak Sense for Stochastic Differential Equations with Small Noise</atitle><jtitle>SIAM journal on numerical analysis</jtitle><date>1997-12-01</date><risdate>1997</risdate><volume>34</volume><issue>6</issue><spage>2142</spage><epage>2167</epage><pages>2142-2167</pages><issn>0036-1429</issn><eissn>1095-7170</eissn><abstract>We propose a new approach to constructing weak numerical methods for finding solutions to stochastic systems with small noise. For these methods we prove an error estimate in terms of products hiεj(h is a time increment, ε is a small parameter). We derive various efficient weak schemes for systems with small noise and study the Talay-Tubaro expansion of their global error. An efficient approach to reducing the Monte-Carlo error is presented. Some of the proposed methods are tested by calculating the Lyapunov exponent of a linear system with small noise.</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/S0036142996278967</doi><tpages>26</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-1429 |
ispartof | SIAM journal on numerical analysis, 1997-12, Vol.34 (6), p.2142-2167 |
issn | 0036-1429 1095-7170 |
language | eng |
recordid | cdi_proquest_journals_922687084 |
source | SIAM Journals Online; JSTOR Mathematics & Statistics; Jstor Complete Legacy |
subjects | Approximation Coefficients Computer simulation Differential equations Differentials Error rates Estimation methods Human error Inequality Methods Noise Numerical analysis Numerical methods Random variables Runge Kutta method |
title | Numerical Methods in the Weak Sense for Stochastic Differential Equations with Small Noise |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T09%3A50%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20Methods%20in%20the%20Weak%20Sense%20for%20Stochastic%20Differential%20Equations%20with%20Small%20Noise&rft.jtitle=SIAM%20journal%20on%20numerical%20analysis&rft.au=Milstein,%20G.%20N.&rft.date=1997-12-01&rft.volume=34&rft.issue=6&rft.spage=2142&rft.epage=2167&rft.pages=2142-2167&rft.issn=0036-1429&rft.eissn=1095-7170&rft_id=info:doi/10.1137/S0036142996278967&rft_dat=%3Cjstor_proqu%3E2951943%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=922687084&rft_id=info:pmid/&rft_jstor_id=2951943&rfr_iscdi=true |