On the Analysis of Finite Volume Methods for Evolutionary Problems
Finite volume or finite element methods now dominate the modeling of steady flows because of their natural handling of complex configurations. They should have a similar advantage for unsteady flows; however, their error analysis on nonuniform meshes has met a number of difficulties. In this paper a...
Gespeichert in:
Veröffentlicht in: | SIAM journal on numerical analysis 1998-12, Vol.35 (6), p.2195-2222 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2222 |
---|---|
container_issue | 6 |
container_start_page | 2195 |
container_title | SIAM journal on numerical analysis |
container_volume | 35 |
creator | Morton, K. W. |
description | Finite volume or finite element methods now dominate the modeling of steady flows because of their natural handling of complex configurations. They should have a similar advantage for unsteady flows; however, their error analysis on nonuniform meshes has met a number of difficulties. In this paper a new approach is adopted which makes greater use of a Godunov formulation. It opens the way for a fuller comparison of characteristic-based methods with semidiscrete methods. |
doi_str_mv | 10.1137/S0036142997316967 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_922564708</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2587255</jstor_id><sourcerecordid>2587255</sourcerecordid><originalsourceid>FETCH-LOGICAL-c320t-faad9b98157ba1cb1f3ec294098e222707944c805bc04438b48f9d83de262d6b3</originalsourceid><addsrcrecordid>eNplkEtLAzEUhYMoWKs_QHARxO1onpNkWUurQqWCj-2QySR0ynRSk7TQf29Kiy5cXe4937kcDgDXGN1jTMXDO0K0xIwoJSguVSlOwAAjxQuBBToFg71c7PVzcBHjEuVdYjoAj_MepoWFo153u9hG6B2ctn2bLPzy3WZl4atNC99E6HyAk22-pdb3OuzgW_B1Z1fxEpw53UV7dZxD8DmdfIyfi9n86WU8mhWGEpQKp3WjaiUxF7XGpsaOWkMUQ0paQohAQjFmJOK1QYxRWTPpVCNpY0lJmrKmQ3B7-LsO_ntjY6qWfhNy7lgpQnjJBJIZwgfIBB9jsK5ah3aV41YYVfumqn9NZc_d8bGORncu6N608c8ohCSYZezmgC1j8uFXJlwKwjn9AfFLcAU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>922564708</pqid></control><display><type>article</type><title>On the Analysis of Finite Volume Methods for Evolutionary Problems</title><source>SIAM Journals</source><source>JSTOR Mathematics & Statistics</source><source>JSTOR</source><creator>Morton, K. W.</creator><creatorcontrib>Morton, K. W.</creatorcontrib><description>Finite volume or finite element methods now dominate the modeling of steady flows because of their natural handling of complex configurations. They should have a similar advantage for unsteady flows; however, their error analysis on nonuniform meshes has met a number of difficulties. In this paper a new approach is adopted which makes greater use of a Godunov formulation. It opens the way for a fuller comparison of characteristic-based methods with semidiscrete methods.</description><identifier>ISSN: 0036-1429</identifier><identifier>EISSN: 1095-7170</identifier><identifier>DOI: 10.1137/S0036142997316967</identifier><identifier>CODEN: SJNAEQ</identifier><language>eng</language><publisher>Philadelphia, PA: Society for Industrial and Applied Mathematics</publisher><subject>Advection ; Aircraft ; Approximation ; Computational techniques ; Conservation laws ; Damping ; Error analysis ; Error rates ; Exact sciences and technology ; Finite volume method ; Finite-element and galerkin methods ; Finite-volume methods ; Mathematical methods in physics ; Mathematics ; Numerical analysis ; Numerical analysis. Scientific computation ; Partial differential equations, initial value problems and time-dependant initial-boundary value problems ; Physics ; Scalars ; Sciences and techniques of general use ; Truncation errors ; Velocity ; Vertices ; Vortices</subject><ispartof>SIAM journal on numerical analysis, 1998-12, Vol.35 (6), p.2195-2222</ispartof><rights>Copyright 1998 Society for Industrial and Applied Mathematics</rights><rights>1999 INIST-CNRS</rights><rights>[Copyright] © 1998 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c320t-faad9b98157ba1cb1f3ec294098e222707944c805bc04438b48f9d83de262d6b3</citedby><cites>FETCH-LOGICAL-c320t-faad9b98157ba1cb1f3ec294098e222707944c805bc04438b48f9d83de262d6b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2587255$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2587255$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,3184,27924,27925,58017,58021,58250,58254</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1778214$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Morton, K. W.</creatorcontrib><title>On the Analysis of Finite Volume Methods for Evolutionary Problems</title><title>SIAM journal on numerical analysis</title><description>Finite volume or finite element methods now dominate the modeling of steady flows because of their natural handling of complex configurations. They should have a similar advantage for unsteady flows; however, their error analysis on nonuniform meshes has met a number of difficulties. In this paper a new approach is adopted which makes greater use of a Godunov formulation. It opens the way for a fuller comparison of characteristic-based methods with semidiscrete methods.</description><subject>Advection</subject><subject>Aircraft</subject><subject>Approximation</subject><subject>Computational techniques</subject><subject>Conservation laws</subject><subject>Damping</subject><subject>Error analysis</subject><subject>Error rates</subject><subject>Exact sciences and technology</subject><subject>Finite volume method</subject><subject>Finite-element and galerkin methods</subject><subject>Finite-volume methods</subject><subject>Mathematical methods in physics</subject><subject>Mathematics</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Partial differential equations, initial value problems and time-dependant initial-boundary value problems</subject><subject>Physics</subject><subject>Scalars</subject><subject>Sciences and techniques of general use</subject><subject>Truncation errors</subject><subject>Velocity</subject><subject>Vertices</subject><subject>Vortices</subject><issn>0036-1429</issn><issn>1095-7170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNplkEtLAzEUhYMoWKs_QHARxO1onpNkWUurQqWCj-2QySR0ynRSk7TQf29Kiy5cXe4937kcDgDXGN1jTMXDO0K0xIwoJSguVSlOwAAjxQuBBToFg71c7PVzcBHjEuVdYjoAj_MepoWFo153u9hG6B2ctn2bLPzy3WZl4atNC99E6HyAk22-pdb3OuzgW_B1Z1fxEpw53UV7dZxD8DmdfIyfi9n86WU8mhWGEpQKp3WjaiUxF7XGpsaOWkMUQ0paQohAQjFmJOK1QYxRWTPpVCNpY0lJmrKmQ3B7-LsO_ntjY6qWfhNy7lgpQnjJBJIZwgfIBB9jsK5ah3aV41YYVfumqn9NZc_d8bGORncu6N608c8ohCSYZezmgC1j8uFXJlwKwjn9AfFLcAU</recordid><startdate>19981201</startdate><enddate>19981201</enddate><creator>Morton, K. W.</creator><general>Society for Industrial and Applied Mathematics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>19981201</creationdate><title>On the Analysis of Finite Volume Methods for Evolutionary Problems</title><author>Morton, K. W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c320t-faad9b98157ba1cb1f3ec294098e222707944c805bc04438b48f9d83de262d6b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Advection</topic><topic>Aircraft</topic><topic>Approximation</topic><topic>Computational techniques</topic><topic>Conservation laws</topic><topic>Damping</topic><topic>Error analysis</topic><topic>Error rates</topic><topic>Exact sciences and technology</topic><topic>Finite volume method</topic><topic>Finite-element and galerkin methods</topic><topic>Finite-volume methods</topic><topic>Mathematical methods in physics</topic><topic>Mathematics</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Partial differential equations, initial value problems and time-dependant initial-boundary value problems</topic><topic>Physics</topic><topic>Scalars</topic><topic>Sciences and techniques of general use</topic><topic>Truncation errors</topic><topic>Velocity</topic><topic>Vertices</topic><topic>Vortices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morton, K. W.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>ProQuest Science Journals</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials science collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on numerical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morton, K. W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Analysis of Finite Volume Methods for Evolutionary Problems</atitle><jtitle>SIAM journal on numerical analysis</jtitle><date>1998-12-01</date><risdate>1998</risdate><volume>35</volume><issue>6</issue><spage>2195</spage><epage>2222</epage><pages>2195-2222</pages><issn>0036-1429</issn><eissn>1095-7170</eissn><coden>SJNAEQ</coden><abstract>Finite volume or finite element methods now dominate the modeling of steady flows because of their natural handling of complex configurations. They should have a similar advantage for unsteady flows; however, their error analysis on nonuniform meshes has met a number of difficulties. In this paper a new approach is adopted which makes greater use of a Godunov formulation. It opens the way for a fuller comparison of characteristic-based methods with semidiscrete methods.</abstract><cop>Philadelphia, PA</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/S0036142997316967</doi><tpages>28</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-1429 |
ispartof | SIAM journal on numerical analysis, 1998-12, Vol.35 (6), p.2195-2222 |
issn | 0036-1429 1095-7170 |
language | eng |
recordid | cdi_proquest_journals_922564708 |
source | SIAM Journals; JSTOR Mathematics & Statistics; JSTOR |
subjects | Advection Aircraft Approximation Computational techniques Conservation laws Damping Error analysis Error rates Exact sciences and technology Finite volume method Finite-element and galerkin methods Finite-volume methods Mathematical methods in physics Mathematics Numerical analysis Numerical analysis. Scientific computation Partial differential equations, initial value problems and time-dependant initial-boundary value problems Physics Scalars Sciences and techniques of general use Truncation errors Velocity Vertices Vortices |
title | On the Analysis of Finite Volume Methods for Evolutionary Problems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T18%3A56%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Analysis%20of%20Finite%20Volume%20Methods%20for%20Evolutionary%20Problems&rft.jtitle=SIAM%20journal%20on%20numerical%20analysis&rft.au=Morton,%20K.%20W.&rft.date=1998-12-01&rft.volume=35&rft.issue=6&rft.spage=2195&rft.epage=2222&rft.pages=2195-2222&rft.issn=0036-1429&rft.eissn=1095-7170&rft.coden=SJNAEQ&rft_id=info:doi/10.1137/S0036142997316967&rft_dat=%3Cjstor_proqu%3E2587255%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=922564708&rft_id=info:pmid/&rft_jstor_id=2587255&rfr_iscdi=true |