An approach for measuring semantic similarity between words using multiple information sources

Semantic similarity between words is becoming a generic problem for many applications of computational linguistics and artificial intelligence. This paper explores the determination of semantic similarity by a number of information sources, which consist of structural semantic information from a lex...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on knowledge and data engineering 2003-07, Vol.15 (4), p.871-882
Hauptverfasser: Li, Y., Bandar, Z.A., Mclean, D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 882
container_issue 4
container_start_page 871
container_title IEEE transactions on knowledge and data engineering
container_volume 15
creator Li, Y.
Bandar, Z.A.
Mclean, D.
description Semantic similarity between words is becoming a generic problem for many applications of computational linguistics and artificial intelligence. This paper explores the determination of semantic similarity by a number of information sources, which consist of structural semantic information from a lexical taxonomy and information content from a corpus. To investigate how information sources could be used effectively, a variety of strategies for using various possible information sources are implemented. A new measure is then proposed which combines information sources nonlinearly. Experimental evaluation against a benchmark set of human similarity ratings demonstrates that the proposed measure significantly outperforms traditional similarity measures.
doi_str_mv 10.1109/TKDE.2003.1209005
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_922420339</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1209005</ieee_id><sourcerecordid>29419108</sourcerecordid><originalsourceid>FETCH-LOGICAL-c450t-93bead3d8cd6d5b1719d23697f67f6a9c0ea8957a880f6473139b2956d9162773</originalsourceid><addsrcrecordid>eNqFkU9LJDEQxRvZBd1ZP4DsJXhYTz1Wkk4ndRxmdVcUvOjVkOmudiP9Z0y6kfn2m2YGBA8rFFRB_erBq5dlZxyWnANePtz-uloKALnkAhBAHWUnXCmTC478S5qh4HkhC32cfYvxBQCMNvwke1r1zG23YXDVX9YMgXXk4hR8_8wida4ffcWi73zrgh93bEPjG1HP3oZQRzbFmeumdvTblpjvk0DnRj_0LA5TqCh-z742ro10euiL7PH66mH9J7-7_32zXt3lVaFgzFFuyNWyNlVd1mrDNcdayBJ1U6ZyWAE5g0o7Y6ApCy25xI1AVdbIS6G1XGQXe93k5HWiONrOx4ra1vU0TNEicA2IZZnIn_8lBRbpY2A-B02hUOGseP4BfEnm-2TXohCFACkxQXwPVWGIMVBjt8F3LuwsBzsnaOcE7ZygPSSYbn7sbzwRvfOH7T_Ulpcs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>922420339</pqid></control><display><type>article</type><title>An approach for measuring semantic similarity between words using multiple information sources</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Y. ; Bandar, Z.A. ; Mclean, D.</creator><creatorcontrib>Li, Y. ; Bandar, Z.A. ; Mclean, D.</creatorcontrib><description>Semantic similarity between words is becoming a generic problem for many applications of computational linguistics and artificial intelligence. This paper explores the determination of semantic similarity by a number of information sources, which consist of structural semantic information from a lexical taxonomy and information content from a corpus. To investigate how information sources could be used effectively, a variety of strategies for using various possible information sources are implemented. A new measure is then proposed which combines information sources nonlinearly. Experimental evaluation against a benchmark set of human similarity ratings demonstrates that the proposed measure significantly outperforms traditional similarity measures.</description><identifier>ISSN: 1041-4347</identifier><identifier>EISSN: 1558-2191</identifier><identifier>DOI: 10.1109/TKDE.2003.1209005</identifier><identifier>CODEN: ITKEEH</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial intelligence ; Computational linguistics ; Expert systems ; Human ; Humans ; Image retrieval ; Information sources ; Joining processes ; Linguistics ; Natural language processing ; Semantics ; Similarity ; Statistics ; Strategy ; Taxonomy</subject><ispartof>IEEE transactions on knowledge and data engineering, 2003-07, Vol.15 (4), p.871-882</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c450t-93bead3d8cd6d5b1719d23697f67f6a9c0ea8957a880f6473139b2956d9162773</citedby><cites>FETCH-LOGICAL-c450t-93bead3d8cd6d5b1719d23697f67f6a9c0ea8957a880f6473139b2956d9162773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1209005$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1209005$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li, Y.</creatorcontrib><creatorcontrib>Bandar, Z.A.</creatorcontrib><creatorcontrib>Mclean, D.</creatorcontrib><title>An approach for measuring semantic similarity between words using multiple information sources</title><title>IEEE transactions on knowledge and data engineering</title><addtitle>TKDE</addtitle><description>Semantic similarity between words is becoming a generic problem for many applications of computational linguistics and artificial intelligence. This paper explores the determination of semantic similarity by a number of information sources, which consist of structural semantic information from a lexical taxonomy and information content from a corpus. To investigate how information sources could be used effectively, a variety of strategies for using various possible information sources are implemented. A new measure is then proposed which combines information sources nonlinearly. Experimental evaluation against a benchmark set of human similarity ratings demonstrates that the proposed measure significantly outperforms traditional similarity measures.</description><subject>Artificial intelligence</subject><subject>Computational linguistics</subject><subject>Expert systems</subject><subject>Human</subject><subject>Humans</subject><subject>Image retrieval</subject><subject>Information sources</subject><subject>Joining processes</subject><subject>Linguistics</subject><subject>Natural language processing</subject><subject>Semantics</subject><subject>Similarity</subject><subject>Statistics</subject><subject>Strategy</subject><subject>Taxonomy</subject><issn>1041-4347</issn><issn>1558-2191</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFkU9LJDEQxRvZBd1ZP4DsJXhYTz1Wkk4ndRxmdVcUvOjVkOmudiP9Z0y6kfn2m2YGBA8rFFRB_erBq5dlZxyWnANePtz-uloKALnkAhBAHWUnXCmTC478S5qh4HkhC32cfYvxBQCMNvwke1r1zG23YXDVX9YMgXXk4hR8_8wida4ffcWi73zrgh93bEPjG1HP3oZQRzbFmeumdvTblpjvk0DnRj_0LA5TqCh-z742ro10euiL7PH66mH9J7-7_32zXt3lVaFgzFFuyNWyNlVd1mrDNcdayBJ1U6ZyWAE5g0o7Y6ApCy25xI1AVdbIS6G1XGQXe93k5HWiONrOx4ra1vU0TNEicA2IZZnIn_8lBRbpY2A-B02hUOGseP4BfEnm-2TXohCFACkxQXwPVWGIMVBjt8F3LuwsBzsnaOcE7ZygPSSYbn7sbzwRvfOH7T_Ulpcs</recordid><startdate>20030701</startdate><enddate>20030701</enddate><creator>Li, Y.</creator><creator>Bandar, Z.A.</creator><creator>Mclean, D.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7TB</scope><scope>FR3</scope><scope>F28</scope></search><sort><creationdate>20030701</creationdate><title>An approach for measuring semantic similarity between words using multiple information sources</title><author>Li, Y. ; Bandar, Z.A. ; Mclean, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c450t-93bead3d8cd6d5b1719d23697f67f6a9c0ea8957a880f6473139b2956d9162773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Artificial intelligence</topic><topic>Computational linguistics</topic><topic>Expert systems</topic><topic>Human</topic><topic>Humans</topic><topic>Image retrieval</topic><topic>Information sources</topic><topic>Joining processes</topic><topic>Linguistics</topic><topic>Natural language processing</topic><topic>Semantics</topic><topic>Similarity</topic><topic>Statistics</topic><topic>Strategy</topic><topic>Taxonomy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Y.</creatorcontrib><creatorcontrib>Bandar, Z.A.</creatorcontrib><creatorcontrib>Mclean, D.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Engineering Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on knowledge and data engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Y.</au><au>Bandar, Z.A.</au><au>Mclean, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An approach for measuring semantic similarity between words using multiple information sources</atitle><jtitle>IEEE transactions on knowledge and data engineering</jtitle><stitle>TKDE</stitle><date>2003-07-01</date><risdate>2003</risdate><volume>15</volume><issue>4</issue><spage>871</spage><epage>882</epage><pages>871-882</pages><issn>1041-4347</issn><eissn>1558-2191</eissn><coden>ITKEEH</coden><abstract>Semantic similarity between words is becoming a generic problem for many applications of computational linguistics and artificial intelligence. This paper explores the determination of semantic similarity by a number of information sources, which consist of structural semantic information from a lexical taxonomy and information content from a corpus. To investigate how information sources could be used effectively, a variety of strategies for using various possible information sources are implemented. A new measure is then proposed which combines information sources nonlinearly. Experimental evaluation against a benchmark set of human similarity ratings demonstrates that the proposed measure significantly outperforms traditional similarity measures.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TKDE.2003.1209005</doi><tpages>12</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1041-4347
ispartof IEEE transactions on knowledge and data engineering, 2003-07, Vol.15 (4), p.871-882
issn 1041-4347
1558-2191
language eng
recordid cdi_proquest_journals_922420339
source IEEE Electronic Library (IEL)
subjects Artificial intelligence
Computational linguistics
Expert systems
Human
Humans
Image retrieval
Information sources
Joining processes
Linguistics
Natural language processing
Semantics
Similarity
Statistics
Strategy
Taxonomy
title An approach for measuring semantic similarity between words using multiple information sources
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T09%3A17%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20approach%20for%20measuring%20semantic%20similarity%20between%20words%20using%20multiple%20information%20sources&rft.jtitle=IEEE%20transactions%20on%20knowledge%20and%20data%20engineering&rft.au=Li,%20Y.&rft.date=2003-07-01&rft.volume=15&rft.issue=4&rft.spage=871&rft.epage=882&rft.pages=871-882&rft.issn=1041-4347&rft.eissn=1558-2191&rft.coden=ITKEEH&rft_id=info:doi/10.1109/TKDE.2003.1209005&rft_dat=%3Cproquest_RIE%3E29419108%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=922420339&rft_id=info:pmid/&rft_ieee_id=1209005&rfr_iscdi=true