Discretization of Unsteady Hyperbolic Conservation Laws

A basic target algorithm for approximating unsteady hyperbolic conservation laws uses a finite volume formulation in three steps: recovery or reconstruction of a more accurate approximation from a set of cell averages; solution of the conservation law to obtain interface fluxes averaged over a time...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on numerical analysis 2002, Vol.39 (5), p.1556-1597
1. Verfasser: Morton, K. W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1597
container_issue 5
container_start_page 1556
container_title SIAM journal on numerical analysis
container_volume 39
creator Morton, K. W.
description A basic target algorithm for approximating unsteady hyperbolic conservation laws uses a finite volume formulation in three steps: recovery or reconstruction of a more accurate approximation from a set of cell averages; solution of the conservation law to obtain interface fluxes averaged over a time step; and computation of new cell averages at the new time level. In this paper the target is achieved by bringing together ideas from Brenier's transport collapse operator-using Lin, Morton, and Süli's Riemann-Stieltjes interpretation, van Leer's MUSCL algorithm, Colella and Woodward's PPM algorithm, and Goodman and LeVeque's flux approximation. First, second, and third order accurate algorithms are developed for nonuniform one-dimensional grids, and extensions are described for unstructured triangular meshes. The MUSCL-type scheme in one dimension is proved to be TV-stable right up to the natural CFL limit, in which characteristics cross no more than one cell in one time step, and under the least restrictive necessary TVD condition on the recovery stage.
doi_str_mv 10.1137/S0036142900373956
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_922398819</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>4101026</jstor_id><sourcerecordid>4101026</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-c265b5776c27e326a6ac79f528e8c12ba0c564cd5972fe9c28c29cf69aea43433</originalsourceid><addsrcrecordid>eNplkE9LAzEQxYMoWKsfQPCwCB5XM8km2Ryl_oWCB-15SacJbKmbmtkq9dObskUPnh7D-7038Bg7B34NIM3NK-dSQyVsViOt0gdsBNyq0oDhh2y0s8udf8xOiJY83zXIETN3LWHyffvt-jZ2RQzFrKPeu8W2eNqufZrHVYvFJHbk0-fATN0XnbKj4Fbkz_Y6ZrOH-7fJUzl9eXye3E5LlAL6EoVWc2WMRmG8FNpph8YGJWpfI4i546h0hQtljQjeoqhRWAzaOu8qWUk5ZpdD7zrFj42nvlnGTeryy8YKIW1dg80QDBCmSJR8aNapfXdp2wBvdvM0_-bJmat9sSN0q5Bchy39BTOkjOSZuxi4JfUx_foVcOBCyx-f7Gz0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>922398819</pqid></control><display><type>article</type><title>Discretization of Unsteady Hyperbolic Conservation Laws</title><source>SIAM Journals Online</source><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Morton, K. W.</creator><creatorcontrib>Morton, K. W.</creatorcontrib><description>A basic target algorithm for approximating unsteady hyperbolic conservation laws uses a finite volume formulation in three steps: recovery or reconstruction of a more accurate approximation from a set of cell averages; solution of the conservation law to obtain interface fluxes averaged over a time step; and computation of new cell averages at the new time level. In this paper the target is achieved by bringing together ideas from Brenier's transport collapse operator-using Lin, Morton, and Süli's Riemann-Stieltjes interpretation, van Leer's MUSCL algorithm, Colella and Woodward's PPM algorithm, and Goodman and LeVeque's flux approximation. First, second, and third order accurate algorithms are developed for nonuniform one-dimensional grids, and extensions are described for unstructured triangular meshes. The MUSCL-type scheme in one dimension is proved to be TV-stable right up to the natural CFL limit, in which characteristics cross no more than one cell in one time step, and under the least restrictive necessary TVD condition on the recovery stage.</description><identifier>ISSN: 0036-1429</identifier><identifier>EISSN: 1095-7170</identifier><identifier>DOI: 10.1137/S0036142900373956</identifier><identifier>CODEN: SJNAEQ</identifier><language>eng</language><publisher>Philadelphia, PA: Society for Industrial and Applied Mathematics</publisher><subject>Accuracy ; Algorithms ; Approximation ; Arithmetic mean ; Conservation laws ; Exact sciences and technology ; Galerkin methods ; Mathematical discontinuity ; Mathematical integrals ; Mathematics ; Navier-Stokes equations ; Numerical analysis ; Numerical analysis. Scientific computation ; Partial differential equations, initial value problems and time-dependant initial-boundary value problems ; Scalars ; Sciences and techniques of general use ; Tensors ; Vertices ; Zero</subject><ispartof>SIAM journal on numerical analysis, 2002, Vol.39 (5), p.1556-1597</ispartof><rights>Copyright 2002 Society for Industrial and Applied Mathematics</rights><rights>2002 INIST-CNRS</rights><rights>[Copyright] © 2001 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c321t-c265b5776c27e326a6ac79f528e8c12ba0c564cd5972fe9c28c29cf69aea43433</citedby><cites>FETCH-LOGICAL-c321t-c265b5776c27e326a6ac79f528e8c12ba0c564cd5972fe9c28c29cf69aea43433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/4101026$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/4101026$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,3182,4022,27922,27923,27924,58016,58020,58249,58253</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=13955730$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Morton, K. W.</creatorcontrib><title>Discretization of Unsteady Hyperbolic Conservation Laws</title><title>SIAM journal on numerical analysis</title><description>A basic target algorithm for approximating unsteady hyperbolic conservation laws uses a finite volume formulation in three steps: recovery or reconstruction of a more accurate approximation from a set of cell averages; solution of the conservation law to obtain interface fluxes averaged over a time step; and computation of new cell averages at the new time level. In this paper the target is achieved by bringing together ideas from Brenier's transport collapse operator-using Lin, Morton, and Süli's Riemann-Stieltjes interpretation, van Leer's MUSCL algorithm, Colella and Woodward's PPM algorithm, and Goodman and LeVeque's flux approximation. First, second, and third order accurate algorithms are developed for nonuniform one-dimensional grids, and extensions are described for unstructured triangular meshes. The MUSCL-type scheme in one dimension is proved to be TV-stable right up to the natural CFL limit, in which characteristics cross no more than one cell in one time step, and under the least restrictive necessary TVD condition on the recovery stage.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Approximation</subject><subject>Arithmetic mean</subject><subject>Conservation laws</subject><subject>Exact sciences and technology</subject><subject>Galerkin methods</subject><subject>Mathematical discontinuity</subject><subject>Mathematical integrals</subject><subject>Mathematics</subject><subject>Navier-Stokes equations</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Partial differential equations, initial value problems and time-dependant initial-boundary value problems</subject><subject>Scalars</subject><subject>Sciences and techniques of general use</subject><subject>Tensors</subject><subject>Vertices</subject><subject>Zero</subject><issn>0036-1429</issn><issn>1095-7170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNplkE9LAzEQxYMoWKsfQPCwCB5XM8km2Ryl_oWCB-15SacJbKmbmtkq9dObskUPnh7D-7038Bg7B34NIM3NK-dSQyVsViOt0gdsBNyq0oDhh2y0s8udf8xOiJY83zXIETN3LWHyffvt-jZ2RQzFrKPeu8W2eNqufZrHVYvFJHbk0-fATN0XnbKj4Fbkz_Y6ZrOH-7fJUzl9eXye3E5LlAL6EoVWc2WMRmG8FNpph8YGJWpfI4i546h0hQtljQjeoqhRWAzaOu8qWUk5ZpdD7zrFj42nvlnGTeryy8YKIW1dg80QDBCmSJR8aNapfXdp2wBvdvM0_-bJmat9sSN0q5Bchy39BTOkjOSZuxi4JfUx_foVcOBCyx-f7Gz0</recordid><startdate>2002</startdate><enddate>2002</enddate><creator>Morton, K. W.</creator><general>Society for Industrial and Applied Mathematics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>2002</creationdate><title>Discretization of Unsteady Hyperbolic Conservation Laws</title><author>Morton, K. W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-c265b5776c27e326a6ac79f528e8c12ba0c564cd5972fe9c28c29cf69aea43433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Approximation</topic><topic>Arithmetic mean</topic><topic>Conservation laws</topic><topic>Exact sciences and technology</topic><topic>Galerkin methods</topic><topic>Mathematical discontinuity</topic><topic>Mathematical integrals</topic><topic>Mathematics</topic><topic>Navier-Stokes equations</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Partial differential equations, initial value problems and time-dependant initial-boundary value problems</topic><topic>Scalars</topic><topic>Sciences and techniques of general use</topic><topic>Tensors</topic><topic>Vertices</topic><topic>Zero</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morton, K. W.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on numerical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morton, K. W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discretization of Unsteady Hyperbolic Conservation Laws</atitle><jtitle>SIAM journal on numerical analysis</jtitle><date>2002</date><risdate>2002</risdate><volume>39</volume><issue>5</issue><spage>1556</spage><epage>1597</epage><pages>1556-1597</pages><issn>0036-1429</issn><eissn>1095-7170</eissn><coden>SJNAEQ</coden><abstract>A basic target algorithm for approximating unsteady hyperbolic conservation laws uses a finite volume formulation in three steps: recovery or reconstruction of a more accurate approximation from a set of cell averages; solution of the conservation law to obtain interface fluxes averaged over a time step; and computation of new cell averages at the new time level. In this paper the target is achieved by bringing together ideas from Brenier's transport collapse operator-using Lin, Morton, and Süli's Riemann-Stieltjes interpretation, van Leer's MUSCL algorithm, Colella and Woodward's PPM algorithm, and Goodman and LeVeque's flux approximation. First, second, and third order accurate algorithms are developed for nonuniform one-dimensional grids, and extensions are described for unstructured triangular meshes. The MUSCL-type scheme in one dimension is proved to be TV-stable right up to the natural CFL limit, in which characteristics cross no more than one cell in one time step, and under the least restrictive necessary TVD condition on the recovery stage.</abstract><cop>Philadelphia, PA</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/S0036142900373956</doi><tpages>42</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0036-1429
ispartof SIAM journal on numerical analysis, 2002, Vol.39 (5), p.1556-1597
issn 0036-1429
1095-7170
language eng
recordid cdi_proquest_journals_922398819
source SIAM Journals Online; JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing
subjects Accuracy
Algorithms
Approximation
Arithmetic mean
Conservation laws
Exact sciences and technology
Galerkin methods
Mathematical discontinuity
Mathematical integrals
Mathematics
Navier-Stokes equations
Numerical analysis
Numerical analysis. Scientific computation
Partial differential equations, initial value problems and time-dependant initial-boundary value problems
Scalars
Sciences and techniques of general use
Tensors
Vertices
Zero
title Discretization of Unsteady Hyperbolic Conservation Laws
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T07%3A49%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discretization%20of%20Unsteady%20Hyperbolic%20Conservation%20Laws&rft.jtitle=SIAM%20journal%20on%20numerical%20analysis&rft.au=Morton,%20K.%20W.&rft.date=2002&rft.volume=39&rft.issue=5&rft.spage=1556&rft.epage=1597&rft.pages=1556-1597&rft.issn=0036-1429&rft.eissn=1095-7170&rft.coden=SJNAEQ&rft_id=info:doi/10.1137/S0036142900373956&rft_dat=%3Cjstor_proqu%3E4101026%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=922398819&rft_id=info:pmid/&rft_jstor_id=4101026&rfr_iscdi=true