Mixed hp-DGFEM for Incompressible Flows
We consider several mixed discontinuous Galerkin approximations of the Stokes problem and propose an abstract framework for their analysis. Using this framework, we derive a priori error estimates for hp-approximations on tensor product meshes. We also prove a new stability estimate for the discrete...
Gespeichert in:
Veröffentlicht in: | SIAM journal on numerical analysis 2003-01, Vol.40 (6), p.2171-2194 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2194 |
---|---|
container_issue | 6 |
container_start_page | 2171 |
container_title | SIAM journal on numerical analysis |
container_volume | 40 |
creator | Schötzau, Dominik Schwab, Christoph Toselli, Andrea |
description | We consider several mixed discontinuous Galerkin approximations of the Stokes problem and propose an abstract framework for their analysis. Using this framework, we derive a priori error estimates for hp-approximations on tensor product meshes. We also prove a new stability estimate for the discrete divergence bilinear form. |
doi_str_mv | 10.1137/S0036142901399124 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_922308413</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>4100989</jstor_id><sourcerecordid>4100989</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-93e947fde92549975f6c2b47cdcab4ec43e908342595463fd6dc1b46e57b7adb3</originalsourceid><addsrcrecordid>eNplkE1Lw0AQhhdRsFZ_gOAhCOIpurOfmaPUthZaPKjnsNnsYkrajbst6r83pUUPnobhed4ZeAm5BHoHwPX9C6VcgWBIgSMCE0dkABRlrkHTYzLY4XzHT8lZSkva7wXwAbldNF-uzt67_HE6GS8yH2I2W9uw6qJLqalal03a8JnOyYk3bXIXhzkkb5Px6-gpnz9PZ6OHeW45g02O3KHQvnbIpEDU0ivLKqFtbU0lnBU9pwUXTKIUivta1RYqoZzUlTZ1xYfken-3i-Fj69KmXIZtXPcvS2SM00IA7yXYSzaGlKLzZReblYnfJdByV0f5r44-c3M4bJI1rY9mbZv0F5RcK1TYe1d7b5k2If5yAZRigfwHKrZl5Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>922308413</pqid></control><display><type>article</type><title>Mixed hp-DGFEM for Incompressible Flows</title><source>SIAM Journals Online</source><source>JSTOR Mathematics & Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Schötzau, Dominik ; Schwab, Christoph ; Toselli, Andrea</creator><creatorcontrib>Schötzau, Dominik ; Schwab, Christoph ; Toselli, Andrea</creatorcontrib><description>We consider several mixed discontinuous Galerkin approximations of the Stokes problem and propose an abstract framework for their analysis. Using this framework, we derive a priori error estimates for hp-approximations on tensor product meshes. We also prove a new stability estimate for the discrete divergence bilinear form.</description><identifier>ISSN: 0036-1429</identifier><identifier>EISSN: 1095-7170</identifier><identifier>DOI: 10.1137/S0036142901399124</identifier><identifier>CODEN: SJNAEQ</identifier><language>eng</language><publisher>Philadelphia, PA: Society for Industrial and Applied Mathematics</publisher><subject>A priori knowledge ; Approximation ; Conformity ; Degrees of polynomials ; Estimates ; Estimation methods ; Exact sciences and technology ; Finite element method ; Galerkin methods ; Mathematical analysis ; Mathematical discontinuity ; Mathematics ; Navier Stokes equation ; Navier-Stokes equations ; Numerical analysis ; Numerical analysis. Scientific computation ; Partial differential equations ; Partial differential equations, boundary value problems ; Polynomials ; Sciences and techniques of general use ; Velocity</subject><ispartof>SIAM journal on numerical analysis, 2003-01, Vol.40 (6), p.2171-2194</ispartof><rights>Copyright 2003 Society for Industrial and Applied Mathematics</rights><rights>2004 INIST-CNRS</rights><rights>[Copyright] © 2003 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c321t-93e947fde92549975f6c2b47cdcab4ec43e908342595463fd6dc1b46e57b7adb3</citedby><cites>FETCH-LOGICAL-c321t-93e947fde92549975f6c2b47cdcab4ec43e908342595463fd6dc1b46e57b7adb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/4100989$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/4100989$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,3184,27924,27925,58017,58021,58250,58254</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15376969$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Schötzau, Dominik</creatorcontrib><creatorcontrib>Schwab, Christoph</creatorcontrib><creatorcontrib>Toselli, Andrea</creatorcontrib><title>Mixed hp-DGFEM for Incompressible Flows</title><title>SIAM journal on numerical analysis</title><description>We consider several mixed discontinuous Galerkin approximations of the Stokes problem and propose an abstract framework for their analysis. Using this framework, we derive a priori error estimates for hp-approximations on tensor product meshes. We also prove a new stability estimate for the discrete divergence bilinear form.</description><subject>A priori knowledge</subject><subject>Approximation</subject><subject>Conformity</subject><subject>Degrees of polynomials</subject><subject>Estimates</subject><subject>Estimation methods</subject><subject>Exact sciences and technology</subject><subject>Finite element method</subject><subject>Galerkin methods</subject><subject>Mathematical analysis</subject><subject>Mathematical discontinuity</subject><subject>Mathematics</subject><subject>Navier Stokes equation</subject><subject>Navier-Stokes equations</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Partial differential equations</subject><subject>Partial differential equations, boundary value problems</subject><subject>Polynomials</subject><subject>Sciences and techniques of general use</subject><subject>Velocity</subject><issn>0036-1429</issn><issn>1095-7170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNplkE1Lw0AQhhdRsFZ_gOAhCOIpurOfmaPUthZaPKjnsNnsYkrajbst6r83pUUPnobhed4ZeAm5BHoHwPX9C6VcgWBIgSMCE0dkABRlrkHTYzLY4XzHT8lZSkva7wXwAbldNF-uzt67_HE6GS8yH2I2W9uw6qJLqalal03a8JnOyYk3bXIXhzkkb5Px6-gpnz9PZ6OHeW45g02O3KHQvnbIpEDU0ivLKqFtbU0lnBU9pwUXTKIUivta1RYqoZzUlTZ1xYfken-3i-Fj69KmXIZtXPcvS2SM00IA7yXYSzaGlKLzZReblYnfJdByV0f5r44-c3M4bJI1rY9mbZv0F5RcK1TYe1d7b5k2If5yAZRigfwHKrZl5Q</recordid><startdate>20030101</startdate><enddate>20030101</enddate><creator>Schötzau, Dominik</creator><creator>Schwab, Christoph</creator><creator>Toselli, Andrea</creator><general>Society for Industrial and Applied Mathematics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>20030101</creationdate><title>Mixed hp-DGFEM for Incompressible Flows</title><author>Schötzau, Dominik ; Schwab, Christoph ; Toselli, Andrea</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-93e947fde92549975f6c2b47cdcab4ec43e908342595463fd6dc1b46e57b7adb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>A priori knowledge</topic><topic>Approximation</topic><topic>Conformity</topic><topic>Degrees of polynomials</topic><topic>Estimates</topic><topic>Estimation methods</topic><topic>Exact sciences and technology</topic><topic>Finite element method</topic><topic>Galerkin methods</topic><topic>Mathematical analysis</topic><topic>Mathematical discontinuity</topic><topic>Mathematics</topic><topic>Navier Stokes equation</topic><topic>Navier-Stokes equations</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Partial differential equations</topic><topic>Partial differential equations, boundary value problems</topic><topic>Polynomials</topic><topic>Sciences and techniques of general use</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schötzau, Dominik</creatorcontrib><creatorcontrib>Schwab, Christoph</creatorcontrib><creatorcontrib>Toselli, Andrea</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on numerical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schötzau, Dominik</au><au>Schwab, Christoph</au><au>Toselli, Andrea</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mixed hp-DGFEM for Incompressible Flows</atitle><jtitle>SIAM journal on numerical analysis</jtitle><date>2003-01-01</date><risdate>2003</risdate><volume>40</volume><issue>6</issue><spage>2171</spage><epage>2194</epage><pages>2171-2194</pages><issn>0036-1429</issn><eissn>1095-7170</eissn><coden>SJNAEQ</coden><abstract>We consider several mixed discontinuous Galerkin approximations of the Stokes problem and propose an abstract framework for their analysis. Using this framework, we derive a priori error estimates for hp-approximations on tensor product meshes. We also prove a new stability estimate for the discrete divergence bilinear form.</abstract><cop>Philadelphia, PA</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/S0036142901399124</doi><tpages>24</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-1429 |
ispartof | SIAM journal on numerical analysis, 2003-01, Vol.40 (6), p.2171-2194 |
issn | 0036-1429 1095-7170 |
language | eng |
recordid | cdi_proquest_journals_922308413 |
source | SIAM Journals Online; JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing |
subjects | A priori knowledge Approximation Conformity Degrees of polynomials Estimates Estimation methods Exact sciences and technology Finite element method Galerkin methods Mathematical analysis Mathematical discontinuity Mathematics Navier Stokes equation Navier-Stokes equations Numerical analysis Numerical analysis. Scientific computation Partial differential equations Partial differential equations, boundary value problems Polynomials Sciences and techniques of general use Velocity |
title | Mixed hp-DGFEM for Incompressible Flows |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T09%3A31%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mixed%20hp-DGFEM%20for%20Incompressible%20Flows&rft.jtitle=SIAM%20journal%20on%20numerical%20analysis&rft.au=Sch%C3%B6tzau,%20Dominik&rft.date=2003-01-01&rft.volume=40&rft.issue=6&rft.spage=2171&rft.epage=2194&rft.pages=2171-2194&rft.issn=0036-1429&rft.eissn=1095-7170&rft.coden=SJNAEQ&rft_id=info:doi/10.1137/S0036142901399124&rft_dat=%3Cjstor_proqu%3E4100989%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=922308413&rft_id=info:pmid/&rft_jstor_id=4100989&rfr_iscdi=true |