Mixed hp-DGFEM for Incompressible Flows

We consider several mixed discontinuous Galerkin approximations of the Stokes problem and propose an abstract framework for their analysis. Using this framework, we derive a priori error estimates for hp-approximations on tensor product meshes. We also prove a new stability estimate for the discrete...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on numerical analysis 2003-01, Vol.40 (6), p.2171-2194
Hauptverfasser: Schötzau, Dominik, Schwab, Christoph, Toselli, Andrea
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2194
container_issue 6
container_start_page 2171
container_title SIAM journal on numerical analysis
container_volume 40
creator Schötzau, Dominik
Schwab, Christoph
Toselli, Andrea
description We consider several mixed discontinuous Galerkin approximations of the Stokes problem and propose an abstract framework for their analysis. Using this framework, we derive a priori error estimates for hp-approximations on tensor product meshes. We also prove a new stability estimate for the discrete divergence bilinear form.
doi_str_mv 10.1137/S0036142901399124
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_922308413</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>4100989</jstor_id><sourcerecordid>4100989</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-93e947fde92549975f6c2b47cdcab4ec43e908342595463fd6dc1b46e57b7adb3</originalsourceid><addsrcrecordid>eNplkE1Lw0AQhhdRsFZ_gOAhCOIpurOfmaPUthZaPKjnsNnsYkrajbst6r83pUUPnobhed4ZeAm5BHoHwPX9C6VcgWBIgSMCE0dkABRlrkHTYzLY4XzHT8lZSkva7wXwAbldNF-uzt67_HE6GS8yH2I2W9uw6qJLqalal03a8JnOyYk3bXIXhzkkb5Px6-gpnz9PZ6OHeW45g02O3KHQvnbIpEDU0ivLKqFtbU0lnBU9pwUXTKIUivta1RYqoZzUlTZ1xYfken-3i-Fj69KmXIZtXPcvS2SM00IA7yXYSzaGlKLzZReblYnfJdByV0f5r44-c3M4bJI1rY9mbZv0F5RcK1TYe1d7b5k2If5yAZRigfwHKrZl5Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>922308413</pqid></control><display><type>article</type><title>Mixed hp-DGFEM for Incompressible Flows</title><source>SIAM Journals Online</source><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Schötzau, Dominik ; Schwab, Christoph ; Toselli, Andrea</creator><creatorcontrib>Schötzau, Dominik ; Schwab, Christoph ; Toselli, Andrea</creatorcontrib><description>We consider several mixed discontinuous Galerkin approximations of the Stokes problem and propose an abstract framework for their analysis. Using this framework, we derive a priori error estimates for hp-approximations on tensor product meshes. We also prove a new stability estimate for the discrete divergence bilinear form.</description><identifier>ISSN: 0036-1429</identifier><identifier>EISSN: 1095-7170</identifier><identifier>DOI: 10.1137/S0036142901399124</identifier><identifier>CODEN: SJNAEQ</identifier><language>eng</language><publisher>Philadelphia, PA: Society for Industrial and Applied Mathematics</publisher><subject>A priori knowledge ; Approximation ; Conformity ; Degrees of polynomials ; Estimates ; Estimation methods ; Exact sciences and technology ; Finite element method ; Galerkin methods ; Mathematical analysis ; Mathematical discontinuity ; Mathematics ; Navier Stokes equation ; Navier-Stokes equations ; Numerical analysis ; Numerical analysis. Scientific computation ; Partial differential equations ; Partial differential equations, boundary value problems ; Polynomials ; Sciences and techniques of general use ; Velocity</subject><ispartof>SIAM journal on numerical analysis, 2003-01, Vol.40 (6), p.2171-2194</ispartof><rights>Copyright 2003 Society for Industrial and Applied Mathematics</rights><rights>2004 INIST-CNRS</rights><rights>[Copyright] © 2003 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c321t-93e947fde92549975f6c2b47cdcab4ec43e908342595463fd6dc1b46e57b7adb3</citedby><cites>FETCH-LOGICAL-c321t-93e947fde92549975f6c2b47cdcab4ec43e908342595463fd6dc1b46e57b7adb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/4100989$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/4100989$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,3184,27924,27925,58017,58021,58250,58254</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15376969$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Schötzau, Dominik</creatorcontrib><creatorcontrib>Schwab, Christoph</creatorcontrib><creatorcontrib>Toselli, Andrea</creatorcontrib><title>Mixed hp-DGFEM for Incompressible Flows</title><title>SIAM journal on numerical analysis</title><description>We consider several mixed discontinuous Galerkin approximations of the Stokes problem and propose an abstract framework for their analysis. Using this framework, we derive a priori error estimates for hp-approximations on tensor product meshes. We also prove a new stability estimate for the discrete divergence bilinear form.</description><subject>A priori knowledge</subject><subject>Approximation</subject><subject>Conformity</subject><subject>Degrees of polynomials</subject><subject>Estimates</subject><subject>Estimation methods</subject><subject>Exact sciences and technology</subject><subject>Finite element method</subject><subject>Galerkin methods</subject><subject>Mathematical analysis</subject><subject>Mathematical discontinuity</subject><subject>Mathematics</subject><subject>Navier Stokes equation</subject><subject>Navier-Stokes equations</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Partial differential equations</subject><subject>Partial differential equations, boundary value problems</subject><subject>Polynomials</subject><subject>Sciences and techniques of general use</subject><subject>Velocity</subject><issn>0036-1429</issn><issn>1095-7170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNplkE1Lw0AQhhdRsFZ_gOAhCOIpurOfmaPUthZaPKjnsNnsYkrajbst6r83pUUPnobhed4ZeAm5BHoHwPX9C6VcgWBIgSMCE0dkABRlrkHTYzLY4XzHT8lZSkva7wXwAbldNF-uzt67_HE6GS8yH2I2W9uw6qJLqalal03a8JnOyYk3bXIXhzkkb5Px6-gpnz9PZ6OHeW45g02O3KHQvnbIpEDU0ivLKqFtbU0lnBU9pwUXTKIUivta1RYqoZzUlTZ1xYfken-3i-Fj69KmXIZtXPcvS2SM00IA7yXYSzaGlKLzZReblYnfJdByV0f5r44-c3M4bJI1rY9mbZv0F5RcK1TYe1d7b5k2If5yAZRigfwHKrZl5Q</recordid><startdate>20030101</startdate><enddate>20030101</enddate><creator>Schötzau, Dominik</creator><creator>Schwab, Christoph</creator><creator>Toselli, Andrea</creator><general>Society for Industrial and Applied Mathematics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>20030101</creationdate><title>Mixed hp-DGFEM for Incompressible Flows</title><author>Schötzau, Dominik ; Schwab, Christoph ; Toselli, Andrea</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-93e947fde92549975f6c2b47cdcab4ec43e908342595463fd6dc1b46e57b7adb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>A priori knowledge</topic><topic>Approximation</topic><topic>Conformity</topic><topic>Degrees of polynomials</topic><topic>Estimates</topic><topic>Estimation methods</topic><topic>Exact sciences and technology</topic><topic>Finite element method</topic><topic>Galerkin methods</topic><topic>Mathematical analysis</topic><topic>Mathematical discontinuity</topic><topic>Mathematics</topic><topic>Navier Stokes equation</topic><topic>Navier-Stokes equations</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Partial differential equations</topic><topic>Partial differential equations, boundary value problems</topic><topic>Polynomials</topic><topic>Sciences and techniques of general use</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schötzau, Dominik</creatorcontrib><creatorcontrib>Schwab, Christoph</creatorcontrib><creatorcontrib>Toselli, Andrea</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on numerical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schötzau, Dominik</au><au>Schwab, Christoph</au><au>Toselli, Andrea</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mixed hp-DGFEM for Incompressible Flows</atitle><jtitle>SIAM journal on numerical analysis</jtitle><date>2003-01-01</date><risdate>2003</risdate><volume>40</volume><issue>6</issue><spage>2171</spage><epage>2194</epage><pages>2171-2194</pages><issn>0036-1429</issn><eissn>1095-7170</eissn><coden>SJNAEQ</coden><abstract>We consider several mixed discontinuous Galerkin approximations of the Stokes problem and propose an abstract framework for their analysis. Using this framework, we derive a priori error estimates for hp-approximations on tensor product meshes. We also prove a new stability estimate for the discrete divergence bilinear form.</abstract><cop>Philadelphia, PA</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/S0036142901399124</doi><tpages>24</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0036-1429
ispartof SIAM journal on numerical analysis, 2003-01, Vol.40 (6), p.2171-2194
issn 0036-1429
1095-7170
language eng
recordid cdi_proquest_journals_922308413
source SIAM Journals Online; JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing
subjects A priori knowledge
Approximation
Conformity
Degrees of polynomials
Estimates
Estimation methods
Exact sciences and technology
Finite element method
Galerkin methods
Mathematical analysis
Mathematical discontinuity
Mathematics
Navier Stokes equation
Navier-Stokes equations
Numerical analysis
Numerical analysis. Scientific computation
Partial differential equations
Partial differential equations, boundary value problems
Polynomials
Sciences and techniques of general use
Velocity
title Mixed hp-DGFEM for Incompressible Flows
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T09%3A31%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mixed%20hp-DGFEM%20for%20Incompressible%20Flows&rft.jtitle=SIAM%20journal%20on%20numerical%20analysis&rft.au=Sch%C3%B6tzau,%20Dominik&rft.date=2003-01-01&rft.volume=40&rft.issue=6&rft.spage=2171&rft.epage=2194&rft.pages=2171-2194&rft.issn=0036-1429&rft.eissn=1095-7170&rft.coden=SJNAEQ&rft_id=info:doi/10.1137/S0036142901399124&rft_dat=%3Cjstor_proqu%3E4100989%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=922308413&rft_id=info:pmid/&rft_jstor_id=4100989&rfr_iscdi=true