Ordered Upwind Methods for Static Hamilton--Jacobi Equations: Theory and Algorithms
We develop a family of fast methods for approximating the solutions to a wide class of static Hamilton--Jacobi PDEs; these fast methods include both semi-Lagrangian and fully Eulerian versions. Numerical solutions to these problems are typically obtained by solving large systems of coupled nonlinear...
Gespeichert in:
Veröffentlicht in: | SIAM journal on numerical analysis 2003-01, Vol.41 (1), p.325-363 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 363 |
---|---|
container_issue | 1 |
container_start_page | 325 |
container_title | SIAM journal on numerical analysis |
container_volume | 41 |
creator | Sethian, James A. Vladimirsky, Alexander |
description | We develop a family of fast methods for approximating the solutions to a wide class of static Hamilton--Jacobi PDEs; these fast methods include both semi-Lagrangian and fully Eulerian versions. Numerical solutions to these problems are typically obtained by solving large systems of coupled nonlinear discretized equations. Our techniques, which we refer to as "Ordered Upwind Methods" (OUMs), use partial information about the characteristic directions to decouple these nonlinear systems, greatly reducing the computational labor. Our techniques are considered in the context of control-theoretic and front-propagation problems. We begin by discussing existing OUMs, focusing on those designed for isotropic problems. We then introduce a new class of OUMs which decouple systems for general (anisotropic) problems. We prove convergence of one such scheme to the viscosity solution of the corresponding Hamilton--Jacobi PDE. Next, we introduce a set of finite-differences methods based on an analysis of the role played by anisotropy in the context of front propagation and optimal trajectory problems. The performance of the methods is analyzed, and computational experiments are performed using test problems from computational geometry and seismology. |
doi_str_mv | 10.1137/S0036142901392742 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_922306358</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2590579851</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-62bae58701c32852f36508569e98a4e356ccb9629f4e3b86207034b2068d75353</originalsourceid><addsrcrecordid>eNplkE9PAjEUxBujiYh-AG-N9-pru_3njRAUDYYDcN50u11ZAltoSwzf3iV48zSZ_Oa9SQahRwrPlHL1sgDgkhbMAOWGqYJdoQEFI4iiCq7R4IzJmd-iu5Q20HtN-QAt5rH20dd4tf9puxp_-bwOdcJNiHiRbW4dntpdu82hI-TTulC1eHI49iB06RUv1z7EE7b95Wj7HWKb17t0j24au03-4U-HaPU2WY6nZDZ__xiPZsRxXWQiWWW90Aqo40wL1nApQAtpvNG28FxI5yojmWl6U2nJQAEvKgZS10pwwYfo6fJ3H8Ph6FMuN-EYu76yNIxxkFzoPkQvIRdDStE35T62OxtPJYXyPF35bzr-C8MLXs4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>922306358</pqid></control><display><type>article</type><title>Ordered Upwind Methods for Static Hamilton--Jacobi Equations: Theory and Algorithms</title><source>SIAM Journals Online</source><source>JSTOR Mathematics & Statistics</source><source>Jstor Complete Legacy</source><creator>Sethian, James A. ; Vladimirsky, Alexander</creator><creatorcontrib>Sethian, James A. ; Vladimirsky, Alexander</creatorcontrib><description>We develop a family of fast methods for approximating the solutions to a wide class of static Hamilton--Jacobi PDEs; these fast methods include both semi-Lagrangian and fully Eulerian versions. Numerical solutions to these problems are typically obtained by solving large systems of coupled nonlinear discretized equations. Our techniques, which we refer to as "Ordered Upwind Methods" (OUMs), use partial information about the characteristic directions to decouple these nonlinear systems, greatly reducing the computational labor. Our techniques are considered in the context of control-theoretic and front-propagation problems. We begin by discussing existing OUMs, focusing on those designed for isotropic problems. We then introduce a new class of OUMs which decouple systems for general (anisotropic) problems. We prove convergence of one such scheme to the viscosity solution of the corresponding Hamilton--Jacobi PDE. Next, we introduce a set of finite-differences methods based on an analysis of the role played by anisotropy in the context of front propagation and optimal trajectory problems. The performance of the methods is analyzed, and computational experiments are performed using test problems from computational geometry and seismology.</description><identifier>ISSN: 0036-1429</identifier><identifier>EISSN: 1095-7170</identifier><identifier>DOI: 10.1137/S0036142901392742</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Algorithms ; Anisotropy ; Applied mathematics ; Methods ; Propagation ; Scholarships & fellowships ; Viscosity</subject><ispartof>SIAM journal on numerical analysis, 2003-01, Vol.41 (1), p.325-363</ispartof><rights>[Copyright] © 2003 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-62bae58701c32852f36508569e98a4e356ccb9629f4e3b86207034b2068d75353</citedby><cites>FETCH-LOGICAL-c384t-62bae58701c32852f36508569e98a4e356ccb9629f4e3b86207034b2068d75353</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,3173,27911,27912</link.rule.ids></links><search><creatorcontrib>Sethian, James A.</creatorcontrib><creatorcontrib>Vladimirsky, Alexander</creatorcontrib><title>Ordered Upwind Methods for Static Hamilton--Jacobi Equations: Theory and Algorithms</title><title>SIAM journal on numerical analysis</title><description>We develop a family of fast methods for approximating the solutions to a wide class of static Hamilton--Jacobi PDEs; these fast methods include both semi-Lagrangian and fully Eulerian versions. Numerical solutions to these problems are typically obtained by solving large systems of coupled nonlinear discretized equations. Our techniques, which we refer to as "Ordered Upwind Methods" (OUMs), use partial information about the characteristic directions to decouple these nonlinear systems, greatly reducing the computational labor. Our techniques are considered in the context of control-theoretic and front-propagation problems. We begin by discussing existing OUMs, focusing on those designed for isotropic problems. We then introduce a new class of OUMs which decouple systems for general (anisotropic) problems. We prove convergence of one such scheme to the viscosity solution of the corresponding Hamilton--Jacobi PDE. Next, we introduce a set of finite-differences methods based on an analysis of the role played by anisotropy in the context of front propagation and optimal trajectory problems. The performance of the methods is analyzed, and computational experiments are performed using test problems from computational geometry and seismology.</description><subject>Algorithms</subject><subject>Anisotropy</subject><subject>Applied mathematics</subject><subject>Methods</subject><subject>Propagation</subject><subject>Scholarships & fellowships</subject><subject>Viscosity</subject><issn>0036-1429</issn><issn>1095-7170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNplkE9PAjEUxBujiYh-AG-N9-pru_3njRAUDYYDcN50u11ZAltoSwzf3iV48zSZ_Oa9SQahRwrPlHL1sgDgkhbMAOWGqYJdoQEFI4iiCq7R4IzJmd-iu5Q20HtN-QAt5rH20dd4tf9puxp_-bwOdcJNiHiRbW4dntpdu82hI-TTulC1eHI49iB06RUv1z7EE7b95Wj7HWKb17t0j24au03-4U-HaPU2WY6nZDZ__xiPZsRxXWQiWWW90Aqo40wL1nApQAtpvNG28FxI5yojmWl6U2nJQAEvKgZS10pwwYfo6fJ3H8Ph6FMuN-EYu76yNIxxkFzoPkQvIRdDStE35T62OxtPJYXyPF35bzr-C8MLXs4</recordid><startdate>20030101</startdate><enddate>20030101</enddate><creator>Sethian, James A.</creator><creator>Vladimirsky, Alexander</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>20030101</creationdate><title>Ordered Upwind Methods for Static Hamilton--Jacobi Equations: Theory and Algorithms</title><author>Sethian, James A. ; Vladimirsky, Alexander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-62bae58701c32852f36508569e98a4e356ccb9629f4e3b86207034b2068d75353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Algorithms</topic><topic>Anisotropy</topic><topic>Applied mathematics</topic><topic>Methods</topic><topic>Propagation</topic><topic>Scholarships & fellowships</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sethian, James A.</creatorcontrib><creatorcontrib>Vladimirsky, Alexander</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on numerical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sethian, James A.</au><au>Vladimirsky, Alexander</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ordered Upwind Methods for Static Hamilton--Jacobi Equations: Theory and Algorithms</atitle><jtitle>SIAM journal on numerical analysis</jtitle><date>2003-01-01</date><risdate>2003</risdate><volume>41</volume><issue>1</issue><spage>325</spage><epage>363</epage><pages>325-363</pages><issn>0036-1429</issn><eissn>1095-7170</eissn><abstract>We develop a family of fast methods for approximating the solutions to a wide class of static Hamilton--Jacobi PDEs; these fast methods include both semi-Lagrangian and fully Eulerian versions. Numerical solutions to these problems are typically obtained by solving large systems of coupled nonlinear discretized equations. Our techniques, which we refer to as "Ordered Upwind Methods" (OUMs), use partial information about the characteristic directions to decouple these nonlinear systems, greatly reducing the computational labor. Our techniques are considered in the context of control-theoretic and front-propagation problems. We begin by discussing existing OUMs, focusing on those designed for isotropic problems. We then introduce a new class of OUMs which decouple systems for general (anisotropic) problems. We prove convergence of one such scheme to the viscosity solution of the corresponding Hamilton--Jacobi PDE. Next, we introduce a set of finite-differences methods based on an analysis of the role played by anisotropy in the context of front propagation and optimal trajectory problems. The performance of the methods is analyzed, and computational experiments are performed using test problems from computational geometry and seismology.</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/S0036142901392742</doi><tpages>39</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-1429 |
ispartof | SIAM journal on numerical analysis, 2003-01, Vol.41 (1), p.325-363 |
issn | 0036-1429 1095-7170 |
language | eng |
recordid | cdi_proquest_journals_922306358 |
source | SIAM Journals Online; JSTOR Mathematics & Statistics; Jstor Complete Legacy |
subjects | Algorithms Anisotropy Applied mathematics Methods Propagation Scholarships & fellowships Viscosity |
title | Ordered Upwind Methods for Static Hamilton--Jacobi Equations: Theory and Algorithms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T13%3A09%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ordered%20Upwind%20Methods%20for%20Static%20Hamilton--Jacobi%20Equations:%20Theory%20and%20Algorithms&rft.jtitle=SIAM%20journal%20on%20numerical%20analysis&rft.au=Sethian,%20James%20A.&rft.date=2003-01-01&rft.volume=41&rft.issue=1&rft.spage=325&rft.epage=363&rft.pages=325-363&rft.issn=0036-1429&rft.eissn=1095-7170&rft_id=info:doi/10.1137/S0036142901392742&rft_dat=%3Cproquest_cross%3E2590579851%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=922306358&rft_id=info:pmid/&rfr_iscdi=true |