Optimization of pinhole collimator for small animal SPECT using Monte Carlo simulation
The aim of this study is to design an optimized pinhole collimator using Monte Carlo simulation for the development of an ultra high-resolution SPECT using a position sensitive photo-multiplier tube. Simulations using Monte Carlo N-Particle Transport code, version 4c were performed to model the pinh...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on nuclear science 2003-06, Vol.50 (3), p.327-332 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 332 |
---|---|
container_issue | 3 |
container_start_page | 327 |
container_title | IEEE transactions on nuclear science |
container_volume | 50 |
creator | Song, Tae Yong Choi, Yong Chung, Yong Hyun Jung, Jin Ho Choe, Yearn Seong Lee, Kyung-Han Kim, Sang Eun Kim, Byung-Tae |
description | The aim of this study is to design an optimized pinhole collimator using Monte Carlo simulation for the development of an ultra high-resolution SPECT using a position sensitive photo-multiplier tube. Simulations using Monte Carlo N-Particle Transport code, version 4c were performed to model the pinhole SPECT system. The simulation geometries consist of a cone-shaped pinhole collimator with tungsten aperture and a NaI(Tl) scintillation crystal measuring 6 mm in thickness and 120 mm in diameter. Spatial resolution, sensitivity, edge penetration, and scatter fraction were simulated by changing the pinhole diameter and channel height. The optimal ranges of pinhole diameter and channel height were determined from tradeoff curves of resolution and sensitivity and from penetration and scatter fraction. Tradeoff curves allowed us to determine the optimal range of pinhole diameter to be from 1 mm to 1.5 mm for the system configured in this study. The penetration and scatter fraction curve indicated that the channeled aperture was preferable over knife-edge. The optimal range of channel height was from 0.3 to 0.6 mm. The results demonstrate that the pinhole collimator designed in this study could be utilized to perform ultra high-resolution small animal imaging. |
doi_str_mv | 10.1109/TNS.2003.812448 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_922284288</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1208589</ieee_id><sourcerecordid>2590414351</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-811795d75f44200c6126f475529244c6ebe5b925e347f88f82b5c3e69a0af9003</originalsourceid><addsrcrecordid>eNp9kT1PwzAQhi0EEqUwM7BYDDCltR07sUdUlQ-pUKQWVssNNrhy4mAnA_x6XIKExMBwOt3pudO99wJwitEEYySm64fVhCCUTzgmlPI9MMKM8Qyzku-DEUKYZ4IKcQiOYtymkjLERuB52Xa2tp-qs76B3sDWNm_eaVh552ytOh-gSRFr5RxUTWo5uHqcz9awj7Z5hfe-6TScqeA8jLbu3femY3BglIv65CePwdP1fD27zRbLm7vZ1SKrciq6jGNcCvZSMkNpur0qMCkMLRkjImmoCr3RbCMI0zktDeeGkw2rcl0IhZQRSewYXA572-Dfex07WdtYaedUo30fpUC4KAXlO_LiX5JwljOMWQLP_4Bb34cmqZCCEMIp4TxB0wGqgo8xaCPbkF4TPiRGcmeHTHbInR1ysCNNnA0TVmv9SxPEGRf5Fzj0hG8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>922284288</pqid></control><display><type>article</type><title>Optimization of pinhole collimator for small animal SPECT using Monte Carlo simulation</title><source>IEEE Electronic Library (IEL)</source><creator>Song, Tae Yong ; Choi, Yong ; Chung, Yong Hyun ; Jung, Jin Ho ; Choe, Yearn Seong ; Lee, Kyung-Han ; Kim, Sang Eun ; Kim, Byung-Tae</creator><creatorcontrib>Song, Tae Yong ; Choi, Yong ; Chung, Yong Hyun ; Jung, Jin Ho ; Choe, Yearn Seong ; Lee, Kyung-Han ; Kim, Sang Eun ; Kim, Byung-Tae</creatorcontrib><description>The aim of this study is to design an optimized pinhole collimator using Monte Carlo simulation for the development of an ultra high-resolution SPECT using a position sensitive photo-multiplier tube. Simulations using Monte Carlo N-Particle Transport code, version 4c were performed to model the pinhole SPECT system. The simulation geometries consist of a cone-shaped pinhole collimator with tungsten aperture and a NaI(Tl) scintillation crystal measuring 6 mm in thickness and 120 mm in diameter. Spatial resolution, sensitivity, edge penetration, and scatter fraction were simulated by changing the pinhole diameter and channel height. The optimal ranges of pinhole diameter and channel height were determined from tradeoff curves of resolution and sensitivity and from penetration and scatter fraction. Tradeoff curves allowed us to determine the optimal range of pinhole diameter to be from 1 mm to 1.5 mm for the system configured in this study. The penetration and scatter fraction curve indicated that the channeled aperture was preferable over knife-edge. The optimal range of channel height was from 0.3 to 0.6 mm. The results demonstrate that the pinhole collimator designed in this study could be utilized to perform ultra high-resolution small animal imaging.</description><identifier>ISSN: 0018-9499</identifier><identifier>EISSN: 1558-1578</identifier><identifier>DOI: 10.1109/TNS.2003.812448</identifier><identifier>CODEN: IETNAE</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Animals ; Apertures ; Channels ; Collimators ; Computer simulation ; Design optimization ; Geometry ; Monte Carlo methods ; Monte Carlo simulation ; Optimization ; Penetration ; Pinholes ; Scatter ; Scattering ; Solid modeling ; Spatial resolution ; Tungsten</subject><ispartof>IEEE transactions on nuclear science, 2003-06, Vol.50 (3), p.327-332</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-811795d75f44200c6126f475529244c6ebe5b925e347f88f82b5c3e69a0af9003</citedby><cites>FETCH-LOGICAL-c349t-811795d75f44200c6126f475529244c6ebe5b925e347f88f82b5c3e69a0af9003</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1208589$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1208589$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Song, Tae Yong</creatorcontrib><creatorcontrib>Choi, Yong</creatorcontrib><creatorcontrib>Chung, Yong Hyun</creatorcontrib><creatorcontrib>Jung, Jin Ho</creatorcontrib><creatorcontrib>Choe, Yearn Seong</creatorcontrib><creatorcontrib>Lee, Kyung-Han</creatorcontrib><creatorcontrib>Kim, Sang Eun</creatorcontrib><creatorcontrib>Kim, Byung-Tae</creatorcontrib><title>Optimization of pinhole collimator for small animal SPECT using Monte Carlo simulation</title><title>IEEE transactions on nuclear science</title><addtitle>TNS</addtitle><description>The aim of this study is to design an optimized pinhole collimator using Monte Carlo simulation for the development of an ultra high-resolution SPECT using a position sensitive photo-multiplier tube. Simulations using Monte Carlo N-Particle Transport code, version 4c were performed to model the pinhole SPECT system. The simulation geometries consist of a cone-shaped pinhole collimator with tungsten aperture and a NaI(Tl) scintillation crystal measuring 6 mm in thickness and 120 mm in diameter. Spatial resolution, sensitivity, edge penetration, and scatter fraction were simulated by changing the pinhole diameter and channel height. The optimal ranges of pinhole diameter and channel height were determined from tradeoff curves of resolution and sensitivity and from penetration and scatter fraction. Tradeoff curves allowed us to determine the optimal range of pinhole diameter to be from 1 mm to 1.5 mm for the system configured in this study. The penetration and scatter fraction curve indicated that the channeled aperture was preferable over knife-edge. The optimal range of channel height was from 0.3 to 0.6 mm. The results demonstrate that the pinhole collimator designed in this study could be utilized to perform ultra high-resolution small animal imaging.</description><subject>Animals</subject><subject>Apertures</subject><subject>Channels</subject><subject>Collimators</subject><subject>Computer simulation</subject><subject>Design optimization</subject><subject>Geometry</subject><subject>Monte Carlo methods</subject><subject>Monte Carlo simulation</subject><subject>Optimization</subject><subject>Penetration</subject><subject>Pinholes</subject><subject>Scatter</subject><subject>Scattering</subject><subject>Solid modeling</subject><subject>Spatial resolution</subject><subject>Tungsten</subject><issn>0018-9499</issn><issn>1558-1578</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kT1PwzAQhi0EEqUwM7BYDDCltR07sUdUlQ-pUKQWVssNNrhy4mAnA_x6XIKExMBwOt3pudO99wJwitEEYySm64fVhCCUTzgmlPI9MMKM8Qyzku-DEUKYZ4IKcQiOYtymkjLERuB52Xa2tp-qs76B3sDWNm_eaVh552ytOh-gSRFr5RxUTWo5uHqcz9awj7Z5hfe-6TScqeA8jLbu3femY3BglIv65CePwdP1fD27zRbLm7vZ1SKrciq6jGNcCvZSMkNpur0qMCkMLRkjImmoCr3RbCMI0zktDeeGkw2rcl0IhZQRSewYXA572-Dfex07WdtYaedUo30fpUC4KAXlO_LiX5JwljOMWQLP_4Bb34cmqZCCEMIp4TxB0wGqgo8xaCPbkF4TPiRGcmeHTHbInR1ysCNNnA0TVmv9SxPEGRf5Fzj0hG8</recordid><startdate>20030601</startdate><enddate>20030601</enddate><creator>Song, Tae Yong</creator><creator>Choi, Yong</creator><creator>Chung, Yong Hyun</creator><creator>Jung, Jin Ho</creator><creator>Choe, Yearn Seong</creator><creator>Lee, Kyung-Han</creator><creator>Kim, Sang Eun</creator><creator>Kim, Byung-Tae</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QL</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope></search><sort><creationdate>20030601</creationdate><title>Optimization of pinhole collimator for small animal SPECT using Monte Carlo simulation</title><author>Song, Tae Yong ; Choi, Yong ; Chung, Yong Hyun ; Jung, Jin Ho ; Choe, Yearn Seong ; Lee, Kyung-Han ; Kim, Sang Eun ; Kim, Byung-Tae</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-811795d75f44200c6126f475529244c6ebe5b925e347f88f82b5c3e69a0af9003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Animals</topic><topic>Apertures</topic><topic>Channels</topic><topic>Collimators</topic><topic>Computer simulation</topic><topic>Design optimization</topic><topic>Geometry</topic><topic>Monte Carlo methods</topic><topic>Monte Carlo simulation</topic><topic>Optimization</topic><topic>Penetration</topic><topic>Pinholes</topic><topic>Scatter</topic><topic>Scattering</topic><topic>Solid modeling</topic><topic>Spatial resolution</topic><topic>Tungsten</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Tae Yong</creatorcontrib><creatorcontrib>Choi, Yong</creatorcontrib><creatorcontrib>Chung, Yong Hyun</creatorcontrib><creatorcontrib>Jung, Jin Ho</creatorcontrib><creatorcontrib>Choe, Yearn Seong</creatorcontrib><creatorcontrib>Lee, Kyung-Han</creatorcontrib><creatorcontrib>Kim, Sang Eun</creatorcontrib><creatorcontrib>Kim, Byung-Tae</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>IEEE transactions on nuclear science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Song, Tae Yong</au><au>Choi, Yong</au><au>Chung, Yong Hyun</au><au>Jung, Jin Ho</au><au>Choe, Yearn Seong</au><au>Lee, Kyung-Han</au><au>Kim, Sang Eun</au><au>Kim, Byung-Tae</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of pinhole collimator for small animal SPECT using Monte Carlo simulation</atitle><jtitle>IEEE transactions on nuclear science</jtitle><stitle>TNS</stitle><date>2003-06-01</date><risdate>2003</risdate><volume>50</volume><issue>3</issue><spage>327</spage><epage>332</epage><pages>327-332</pages><issn>0018-9499</issn><eissn>1558-1578</eissn><coden>IETNAE</coden><abstract>The aim of this study is to design an optimized pinhole collimator using Monte Carlo simulation for the development of an ultra high-resolution SPECT using a position sensitive photo-multiplier tube. Simulations using Monte Carlo N-Particle Transport code, version 4c were performed to model the pinhole SPECT system. The simulation geometries consist of a cone-shaped pinhole collimator with tungsten aperture and a NaI(Tl) scintillation crystal measuring 6 mm in thickness and 120 mm in diameter. Spatial resolution, sensitivity, edge penetration, and scatter fraction were simulated by changing the pinhole diameter and channel height. The optimal ranges of pinhole diameter and channel height were determined from tradeoff curves of resolution and sensitivity and from penetration and scatter fraction. Tradeoff curves allowed us to determine the optimal range of pinhole diameter to be from 1 mm to 1.5 mm for the system configured in this study. The penetration and scatter fraction curve indicated that the channeled aperture was preferable over knife-edge. The optimal range of channel height was from 0.3 to 0.6 mm. The results demonstrate that the pinhole collimator designed in this study could be utilized to perform ultra high-resolution small animal imaging.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNS.2003.812448</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9499 |
ispartof | IEEE transactions on nuclear science, 2003-06, Vol.50 (3), p.327-332 |
issn | 0018-9499 1558-1578 |
language | eng |
recordid | cdi_proquest_journals_922284288 |
source | IEEE Electronic Library (IEL) |
subjects | Animals Apertures Channels Collimators Computer simulation Design optimization Geometry Monte Carlo methods Monte Carlo simulation Optimization Penetration Pinholes Scatter Scattering Solid modeling Spatial resolution Tungsten |
title | Optimization of pinhole collimator for small animal SPECT using Monte Carlo simulation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T07%3A53%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20pinhole%20collimator%20for%20small%20animal%20SPECT%20using%20Monte%20Carlo%20simulation&rft.jtitle=IEEE%20transactions%20on%20nuclear%20science&rft.au=Song,%20Tae%20Yong&rft.date=2003-06-01&rft.volume=50&rft.issue=3&rft.spage=327&rft.epage=332&rft.pages=327-332&rft.issn=0018-9499&rft.eissn=1558-1578&rft.coden=IETNAE&rft_id=info:doi/10.1109/TNS.2003.812448&rft_dat=%3Cproquest_RIE%3E2590414351%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=922284288&rft_id=info:pmid/&rft_ieee_id=1208589&rfr_iscdi=true |