Sharp Convergence Estimates for the Preconditioned Steepest Descent Method for Hermitian Eigenvalue Problems
The paper is concerned with convergence estimates for the preconditioned steepest descent method for the computation of the smallest eigenvalue of a Hermitian operator. Available estimates are reviewed and new estimates are introduced that improve on the known ones in certain respects. In addition t...
Gespeichert in:
Veröffentlicht in: | SIAM journal on numerical analysis 2006-01, Vol.43 (6), p.2668-2689 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2689 |
---|---|
container_issue | 6 |
container_start_page | 2668 |
container_title | SIAM journal on numerical analysis |
container_volume | 43 |
creator | Ovtchinnikov, E. E. |
description | The paper is concerned with convergence estimates for the preconditioned steepest descent method for the computation of the smallest eigenvalue of a Hermitian operator. Available estimates are reviewed and new estimates are introduced that improve on the known ones in certain respects. In addition to the estimates for the error reduction after one iteration, we consider estimates for the so-called asymptotic convergence factor defined as the upper limit of the average error reduction per iteration. The paper focuses on sharp estimates, i.e., those that cannot be improved without using additional information. |
doi_str_mv | 10.1137/040620643 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_922240540</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>40232757</jstor_id><sourcerecordid>40232757</sourcerecordid><originalsourceid>FETCH-LOGICAL-c308t-a219109ba28e5b5755aee2bd2405edeb62b77626be5a2a459e502a67d41bf7013</originalsourceid><addsrcrecordid>eNpFkEtLw0AQgBdRsFYP_gBhETx4iM6-ss1RarVCRaF6DptkYlPSbN3dFvz3bmypp2GYb755EHLJ4I4xoe9BQsohleKIDBhkKtFMwzEZAIg0YZJnp-TM-yXEfMTEgLTzhXFrOrbdFt0XdiXSiQ_NygT0tLaOhgXSd4el7aomNLbDis4D4hp9oI_oS-wCfcWwsNUfPkW3ipzp6KSJuq1pN32_LVpc-XNyUpvW48U-Dsnn0-RjPE1mb88v44dZUgoYhcRwlsXdC8NHqAqllTKIvKi4BIUVFikvtE55WqAy3EiVoQJuUl1JVtQamBiS65137ez3Jm6aL-3GdXFknnHeayRE6HYHlc5677DO1y7e7X5yBnn_y_zwy8je7IXGl6atnenKxv83jASXKfTOqx239MG6Q10CF1wrLX4BKFl83A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>922240540</pqid></control><display><type>article</type><title>Sharp Convergence Estimates for the Preconditioned Steepest Descent Method for Hermitian Eigenvalue Problems</title><source>JSTOR Mathematics and Statistics</source><source>SIAM journals (Society for Industrial and Applied Mathematics)</source><source>JSTOR</source><creator>Ovtchinnikov, E. E.</creator><creatorcontrib>Ovtchinnikov, E. E.</creatorcontrib><description>The paper is concerned with convergence estimates for the preconditioned steepest descent method for the computation of the smallest eigenvalue of a Hermitian operator. Available estimates are reviewed and new estimates are introduced that improve on the known ones in certain respects. In addition to the estimates for the error reduction after one iteration, we consider estimates for the so-called asymptotic convergence factor defined as the upper limit of the average error reduction per iteration. The paper focuses on sharp estimates, i.e., those that cannot be improved without using additional information.</description><identifier>ISSN: 0036-1429</identifier><identifier>EISSN: 1095-7170</identifier><identifier>DOI: 10.1137/040620643</identifier><identifier>CODEN: SJNAEQ</identifier><language>eng</language><publisher>Philadelphia, PA: Society for Industrial and Applied Mathematics</publisher><subject>Accuracy ; Analytical estimating ; Approximation ; Eigenvalues ; Eigenvectors ; Estimate reliability ; Estimates ; Estimation methods ; Euclidean space ; Exact sciences and technology ; Linear systems ; Mathematics ; Numerical analysis ; Numerical analysis. Scientific computation ; Numerical linear algebra ; Partial differential equations, boundary value problems ; Perceptron convergence procedure ; Preconditioning ; Real numbers ; Sciences and techniques of general use</subject><ispartof>SIAM journal on numerical analysis, 2006-01, Vol.43 (6), p.2668-2689</ispartof><rights>Copyright 2006 Society for Industrial and Applied Mathematics</rights><rights>2007 INIST-CNRS</rights><rights>[Copyright] © 2006 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c308t-a219109ba28e5b5755aee2bd2405edeb62b77626be5a2a459e502a67d41bf7013</citedby><cites>FETCH-LOGICAL-c308t-a219109ba28e5b5755aee2bd2405edeb62b77626be5a2a459e502a67d41bf7013</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/40232757$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/40232757$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,3171,27901,27902,57992,57996,58225,58229</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18324600$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ovtchinnikov, E. E.</creatorcontrib><title>Sharp Convergence Estimates for the Preconditioned Steepest Descent Method for Hermitian Eigenvalue Problems</title><title>SIAM journal on numerical analysis</title><description>The paper is concerned with convergence estimates for the preconditioned steepest descent method for the computation of the smallest eigenvalue of a Hermitian operator. Available estimates are reviewed and new estimates are introduced that improve on the known ones in certain respects. In addition to the estimates for the error reduction after one iteration, we consider estimates for the so-called asymptotic convergence factor defined as the upper limit of the average error reduction per iteration. The paper focuses on sharp estimates, i.e., those that cannot be improved without using additional information.</description><subject>Accuracy</subject><subject>Analytical estimating</subject><subject>Approximation</subject><subject>Eigenvalues</subject><subject>Eigenvectors</subject><subject>Estimate reliability</subject><subject>Estimates</subject><subject>Estimation methods</subject><subject>Euclidean space</subject><subject>Exact sciences and technology</subject><subject>Linear systems</subject><subject>Mathematics</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Numerical linear algebra</subject><subject>Partial differential equations, boundary value problems</subject><subject>Perceptron convergence procedure</subject><subject>Preconditioning</subject><subject>Real numbers</subject><subject>Sciences and techniques of general use</subject><issn>0036-1429</issn><issn>1095-7170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpFkEtLw0AQgBdRsFYP_gBhETx4iM6-ss1RarVCRaF6DptkYlPSbN3dFvz3bmypp2GYb755EHLJ4I4xoe9BQsohleKIDBhkKtFMwzEZAIg0YZJnp-TM-yXEfMTEgLTzhXFrOrbdFt0XdiXSiQ_NygT0tLaOhgXSd4el7aomNLbDis4D4hp9oI_oS-wCfcWwsNUfPkW3ipzp6KSJuq1pN32_LVpc-XNyUpvW48U-Dsnn0-RjPE1mb88v44dZUgoYhcRwlsXdC8NHqAqllTKIvKi4BIUVFikvtE55WqAy3EiVoQJuUl1JVtQamBiS65137ez3Jm6aL-3GdXFknnHeayRE6HYHlc5677DO1y7e7X5yBnn_y_zwy8je7IXGl6atnenKxv83jASXKfTOqx239MG6Q10CF1wrLX4BKFl83A</recordid><startdate>20060101</startdate><enddate>20060101</enddate><creator>Ovtchinnikov, E. E.</creator><general>Society for Industrial and Applied Mathematics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>20060101</creationdate><title>Sharp Convergence Estimates for the Preconditioned Steepest Descent Method for Hermitian Eigenvalue Problems</title><author>Ovtchinnikov, E. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c308t-a219109ba28e5b5755aee2bd2405edeb62b77626be5a2a459e502a67d41bf7013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Accuracy</topic><topic>Analytical estimating</topic><topic>Approximation</topic><topic>Eigenvalues</topic><topic>Eigenvectors</topic><topic>Estimate reliability</topic><topic>Estimates</topic><topic>Estimation methods</topic><topic>Euclidean space</topic><topic>Exact sciences and technology</topic><topic>Linear systems</topic><topic>Mathematics</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Numerical linear algebra</topic><topic>Partial differential equations, boundary value problems</topic><topic>Perceptron convergence procedure</topic><topic>Preconditioning</topic><topic>Real numbers</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ovtchinnikov, E. E.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Database (Proquest)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Agriculture & Environmental Science Database</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>ABI/INFORM global</collection><collection>Agriculture Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Proquest Research Library</collection><collection>ProQuest Science Journals</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>ProQuest Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on numerical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ovtchinnikov, E. E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sharp Convergence Estimates for the Preconditioned Steepest Descent Method for Hermitian Eigenvalue Problems</atitle><jtitle>SIAM journal on numerical analysis</jtitle><date>2006-01-01</date><risdate>2006</risdate><volume>43</volume><issue>6</issue><spage>2668</spage><epage>2689</epage><pages>2668-2689</pages><issn>0036-1429</issn><eissn>1095-7170</eissn><coden>SJNAEQ</coden><abstract>The paper is concerned with convergence estimates for the preconditioned steepest descent method for the computation of the smallest eigenvalue of a Hermitian operator. Available estimates are reviewed and new estimates are introduced that improve on the known ones in certain respects. In addition to the estimates for the error reduction after one iteration, we consider estimates for the so-called asymptotic convergence factor defined as the upper limit of the average error reduction per iteration. The paper focuses on sharp estimates, i.e., those that cannot be improved without using additional information.</abstract><cop>Philadelphia, PA</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/040620643</doi><tpages>22</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-1429 |
ispartof | SIAM journal on numerical analysis, 2006-01, Vol.43 (6), p.2668-2689 |
issn | 0036-1429 1095-7170 |
language | eng |
recordid | cdi_proquest_journals_922240540 |
source | JSTOR Mathematics and Statistics; SIAM journals (Society for Industrial and Applied Mathematics); JSTOR |
subjects | Accuracy Analytical estimating Approximation Eigenvalues Eigenvectors Estimate reliability Estimates Estimation methods Euclidean space Exact sciences and technology Linear systems Mathematics Numerical analysis Numerical analysis. Scientific computation Numerical linear algebra Partial differential equations, boundary value problems Perceptron convergence procedure Preconditioning Real numbers Sciences and techniques of general use |
title | Sharp Convergence Estimates for the Preconditioned Steepest Descent Method for Hermitian Eigenvalue Problems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T08%3A08%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sharp%20Convergence%20Estimates%20for%20the%20Preconditioned%20Steepest%20Descent%20Method%20for%20Hermitian%20Eigenvalue%20Problems&rft.jtitle=SIAM%20journal%20on%20numerical%20analysis&rft.au=Ovtchinnikov,%20E.%20E.&rft.date=2006-01-01&rft.volume=43&rft.issue=6&rft.spage=2668&rft.epage=2689&rft.pages=2668-2689&rft.issn=0036-1429&rft.eissn=1095-7170&rft.coden=SJNAEQ&rft_id=info:doi/10.1137/040620643&rft_dat=%3Cjstor_proqu%3E40232757%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=922240540&rft_id=info:pmid/&rft_jstor_id=40232757&rfr_iscdi=true |