Sharp Convergence Estimates for the Preconditioned Steepest Descent Method for Hermitian Eigenvalue Problems

The paper is concerned with convergence estimates for the preconditioned steepest descent method for the computation of the smallest eigenvalue of a Hermitian operator. Available estimates are reviewed and new estimates are introduced that improve on the known ones in certain respects. In addition t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on numerical analysis 2006-01, Vol.43 (6), p.2668-2689
1. Verfasser: Ovtchinnikov, E. E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2689
container_issue 6
container_start_page 2668
container_title SIAM journal on numerical analysis
container_volume 43
creator Ovtchinnikov, E. E.
description The paper is concerned with convergence estimates for the preconditioned steepest descent method for the computation of the smallest eigenvalue of a Hermitian operator. Available estimates are reviewed and new estimates are introduced that improve on the known ones in certain respects. In addition to the estimates for the error reduction after one iteration, we consider estimates for the so-called asymptotic convergence factor defined as the upper limit of the average error reduction per iteration. The paper focuses on sharp estimates, i.e., those that cannot be improved without using additional information.
doi_str_mv 10.1137/040620643
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_922240540</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>40232757</jstor_id><sourcerecordid>40232757</sourcerecordid><originalsourceid>FETCH-LOGICAL-c308t-a219109ba28e5b5755aee2bd2405edeb62b77626be5a2a459e502a67d41bf7013</originalsourceid><addsrcrecordid>eNpFkEtLw0AQgBdRsFYP_gBhETx4iM6-ss1RarVCRaF6DptkYlPSbN3dFvz3bmypp2GYb755EHLJ4I4xoe9BQsohleKIDBhkKtFMwzEZAIg0YZJnp-TM-yXEfMTEgLTzhXFrOrbdFt0XdiXSiQ_NygT0tLaOhgXSd4el7aomNLbDis4D4hp9oI_oS-wCfcWwsNUfPkW3ipzp6KSJuq1pN32_LVpc-XNyUpvW48U-Dsnn0-RjPE1mb88v44dZUgoYhcRwlsXdC8NHqAqllTKIvKi4BIUVFikvtE55WqAy3EiVoQJuUl1JVtQamBiS65137ez3Jm6aL-3GdXFknnHeayRE6HYHlc5677DO1y7e7X5yBnn_y_zwy8je7IXGl6atnenKxv83jASXKfTOqx239MG6Q10CF1wrLX4BKFl83A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>922240540</pqid></control><display><type>article</type><title>Sharp Convergence Estimates for the Preconditioned Steepest Descent Method for Hermitian Eigenvalue Problems</title><source>JSTOR Mathematics and Statistics</source><source>SIAM journals (Society for Industrial and Applied Mathematics)</source><source>JSTOR</source><creator>Ovtchinnikov, E. E.</creator><creatorcontrib>Ovtchinnikov, E. E.</creatorcontrib><description>The paper is concerned with convergence estimates for the preconditioned steepest descent method for the computation of the smallest eigenvalue of a Hermitian operator. Available estimates are reviewed and new estimates are introduced that improve on the known ones in certain respects. In addition to the estimates for the error reduction after one iteration, we consider estimates for the so-called asymptotic convergence factor defined as the upper limit of the average error reduction per iteration. The paper focuses on sharp estimates, i.e., those that cannot be improved without using additional information.</description><identifier>ISSN: 0036-1429</identifier><identifier>EISSN: 1095-7170</identifier><identifier>DOI: 10.1137/040620643</identifier><identifier>CODEN: SJNAEQ</identifier><language>eng</language><publisher>Philadelphia, PA: Society for Industrial and Applied Mathematics</publisher><subject>Accuracy ; Analytical estimating ; Approximation ; Eigenvalues ; Eigenvectors ; Estimate reliability ; Estimates ; Estimation methods ; Euclidean space ; Exact sciences and technology ; Linear systems ; Mathematics ; Numerical analysis ; Numerical analysis. Scientific computation ; Numerical linear algebra ; Partial differential equations, boundary value problems ; Perceptron convergence procedure ; Preconditioning ; Real numbers ; Sciences and techniques of general use</subject><ispartof>SIAM journal on numerical analysis, 2006-01, Vol.43 (6), p.2668-2689</ispartof><rights>Copyright 2006 Society for Industrial and Applied Mathematics</rights><rights>2007 INIST-CNRS</rights><rights>[Copyright] © 2006 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c308t-a219109ba28e5b5755aee2bd2405edeb62b77626be5a2a459e502a67d41bf7013</citedby><cites>FETCH-LOGICAL-c308t-a219109ba28e5b5755aee2bd2405edeb62b77626be5a2a459e502a67d41bf7013</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/40232757$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/40232757$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,3171,27901,27902,57992,57996,58225,58229</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18324600$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ovtchinnikov, E. E.</creatorcontrib><title>Sharp Convergence Estimates for the Preconditioned Steepest Descent Method for Hermitian Eigenvalue Problems</title><title>SIAM journal on numerical analysis</title><description>The paper is concerned with convergence estimates for the preconditioned steepest descent method for the computation of the smallest eigenvalue of a Hermitian operator. Available estimates are reviewed and new estimates are introduced that improve on the known ones in certain respects. In addition to the estimates for the error reduction after one iteration, we consider estimates for the so-called asymptotic convergence factor defined as the upper limit of the average error reduction per iteration. The paper focuses on sharp estimates, i.e., those that cannot be improved without using additional information.</description><subject>Accuracy</subject><subject>Analytical estimating</subject><subject>Approximation</subject><subject>Eigenvalues</subject><subject>Eigenvectors</subject><subject>Estimate reliability</subject><subject>Estimates</subject><subject>Estimation methods</subject><subject>Euclidean space</subject><subject>Exact sciences and technology</subject><subject>Linear systems</subject><subject>Mathematics</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Numerical linear algebra</subject><subject>Partial differential equations, boundary value problems</subject><subject>Perceptron convergence procedure</subject><subject>Preconditioning</subject><subject>Real numbers</subject><subject>Sciences and techniques of general use</subject><issn>0036-1429</issn><issn>1095-7170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpFkEtLw0AQgBdRsFYP_gBhETx4iM6-ss1RarVCRaF6DptkYlPSbN3dFvz3bmypp2GYb755EHLJ4I4xoe9BQsohleKIDBhkKtFMwzEZAIg0YZJnp-TM-yXEfMTEgLTzhXFrOrbdFt0XdiXSiQ_NygT0tLaOhgXSd4el7aomNLbDis4D4hp9oI_oS-wCfcWwsNUfPkW3ipzp6KSJuq1pN32_LVpc-XNyUpvW48U-Dsnn0-RjPE1mb88v44dZUgoYhcRwlsXdC8NHqAqllTKIvKi4BIUVFikvtE55WqAy3EiVoQJuUl1JVtQamBiS65137ez3Jm6aL-3GdXFknnHeayRE6HYHlc5677DO1y7e7X5yBnn_y_zwy8je7IXGl6atnenKxv83jASXKfTOqx239MG6Q10CF1wrLX4BKFl83A</recordid><startdate>20060101</startdate><enddate>20060101</enddate><creator>Ovtchinnikov, E. E.</creator><general>Society for Industrial and Applied Mathematics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>20060101</creationdate><title>Sharp Convergence Estimates for the Preconditioned Steepest Descent Method for Hermitian Eigenvalue Problems</title><author>Ovtchinnikov, E. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c308t-a219109ba28e5b5755aee2bd2405edeb62b77626be5a2a459e502a67d41bf7013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Accuracy</topic><topic>Analytical estimating</topic><topic>Approximation</topic><topic>Eigenvalues</topic><topic>Eigenvectors</topic><topic>Estimate reliability</topic><topic>Estimates</topic><topic>Estimation methods</topic><topic>Euclidean space</topic><topic>Exact sciences and technology</topic><topic>Linear systems</topic><topic>Mathematics</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Numerical linear algebra</topic><topic>Partial differential equations, boundary value problems</topic><topic>Perceptron convergence procedure</topic><topic>Preconditioning</topic><topic>Real numbers</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ovtchinnikov, E. E.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Database (Proquest)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Agriculture &amp; Environmental Science Database</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>ABI/INFORM global</collection><collection>Agriculture Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Proquest Research Library</collection><collection>ProQuest Science Journals</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>ProQuest Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on numerical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ovtchinnikov, E. E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sharp Convergence Estimates for the Preconditioned Steepest Descent Method for Hermitian Eigenvalue Problems</atitle><jtitle>SIAM journal on numerical analysis</jtitle><date>2006-01-01</date><risdate>2006</risdate><volume>43</volume><issue>6</issue><spage>2668</spage><epage>2689</epage><pages>2668-2689</pages><issn>0036-1429</issn><eissn>1095-7170</eissn><coden>SJNAEQ</coden><abstract>The paper is concerned with convergence estimates for the preconditioned steepest descent method for the computation of the smallest eigenvalue of a Hermitian operator. Available estimates are reviewed and new estimates are introduced that improve on the known ones in certain respects. In addition to the estimates for the error reduction after one iteration, we consider estimates for the so-called asymptotic convergence factor defined as the upper limit of the average error reduction per iteration. The paper focuses on sharp estimates, i.e., those that cannot be improved without using additional information.</abstract><cop>Philadelphia, PA</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/040620643</doi><tpages>22</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0036-1429
ispartof SIAM journal on numerical analysis, 2006-01, Vol.43 (6), p.2668-2689
issn 0036-1429
1095-7170
language eng
recordid cdi_proquest_journals_922240540
source JSTOR Mathematics and Statistics; SIAM journals (Society for Industrial and Applied Mathematics); JSTOR
subjects Accuracy
Analytical estimating
Approximation
Eigenvalues
Eigenvectors
Estimate reliability
Estimates
Estimation methods
Euclidean space
Exact sciences and technology
Linear systems
Mathematics
Numerical analysis
Numerical analysis. Scientific computation
Numerical linear algebra
Partial differential equations, boundary value problems
Perceptron convergence procedure
Preconditioning
Real numbers
Sciences and techniques of general use
title Sharp Convergence Estimates for the Preconditioned Steepest Descent Method for Hermitian Eigenvalue Problems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T08%3A08%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sharp%20Convergence%20Estimates%20for%20the%20Preconditioned%20Steepest%20Descent%20Method%20for%20Hermitian%20Eigenvalue%20Problems&rft.jtitle=SIAM%20journal%20on%20numerical%20analysis&rft.au=Ovtchinnikov,%20E.%20E.&rft.date=2006-01-01&rft.volume=43&rft.issue=6&rft.spage=2668&rft.epage=2689&rft.pages=2668-2689&rft.issn=0036-1429&rft.eissn=1095-7170&rft.coden=SJNAEQ&rft_id=info:doi/10.1137/040620643&rft_dat=%3Cjstor_proqu%3E40232757%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=922240540&rft_id=info:pmid/&rft_jstor_id=40232757&rfr_iscdi=true