On Solving Nonlinear Equations with a One-Parameter Operator Imbedding
Gespeichert in:
Veröffentlicht in: | SIAM journal on numerical analysis 1968-12, Vol.5 (4), p.739-752 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 752 |
---|---|
container_issue | 4 |
container_start_page | 739 |
container_title | SIAM journal on numerical analysis |
container_volume | 5 |
creator | Meyer, Gunter H. |
description | |
doi_str_mv | 10.1137/0705057 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_922064091</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2949424</jstor_id><sourcerecordid>2949424</sourcerecordid><originalsourceid>FETCH-LOGICAL-c203t-3371148a629eb9b1236d968833e315495ffd7702d75214d1e07b18715d65e60c3</originalsourceid><addsrcrecordid>eNo90E1LAzEQBuAgCtYP_AMeghdPqzP53ByltFoorqCel2yT1S1t0iZbxX_vSounYeCZGeYl5ArhDpHre9AgQeojMkIwstCo4ZiMALgqUDBzSs5yXsLQl8hHZFoF-hpXX134oM8xrLrgbaKT7c72XQyZfnf9J7W0Cr54scmufe8TrTY-2T4mOls33rlh9oKctHaV_eWhnpP36eRt_FTMq8fZ-GFeLBjwvuBcI4rSKmZ8YxpkXDmjypJzz1EKI9vWaQ3MaclQOPSgGyw1SqekV7Dg5-Rmv3eT4nbnc18v4y6F4WRtGAMlwOCAbvdokWLOybf1JnVrm35qhPovo_qQ0SCv93KZh3f-GTPCCCb4L-psXxA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>922064091</pqid></control><display><type>article</type><title>On Solving Nonlinear Equations with a One-Parameter Operator Imbedding</title><source>Jstor Complete Legacy</source><source>SIAM journals (Society for Industrial and Applied Mathematics)</source><source>JSTOR</source><creator>Meyer, Gunter H.</creator><creatorcontrib>Meyer, Gunter H.</creatorcontrib><identifier>ISSN: 0036-1429</identifier><identifier>EISSN: 1095-7170</identifier><identifier>DOI: 10.1137/0705057</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Differential equations ; Embeddings ; Eulers method ; Existence theorems ; Hypotheses ; Methods ; Newton approximation methods ; Newtons method ; Nonlinear equations ; Numerical analysis ; Numerical methods ; Perceptron convergence procedure ; R&D ; Research & development</subject><ispartof>SIAM journal on numerical analysis, 1968-12, Vol.5 (4), p.739-752</ispartof><rights>Copyright 1969 Society for Industrial and Applied Mathematics</rights><rights>[Copyright] © 1968 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c203t-3371148a629eb9b1236d968833e315495ffd7702d75214d1e07b18715d65e60c3</citedby><cites>FETCH-LOGICAL-c203t-3371148a629eb9b1236d968833e315495ffd7702d75214d1e07b18715d65e60c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2949424$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2949424$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,3171,27901,27902,57992,57996,58225,58229</link.rule.ids></links><search><creatorcontrib>Meyer, Gunter H.</creatorcontrib><title>On Solving Nonlinear Equations with a One-Parameter Operator Imbedding</title><title>SIAM journal on numerical analysis</title><subject>Differential equations</subject><subject>Embeddings</subject><subject>Eulers method</subject><subject>Existence theorems</subject><subject>Hypotheses</subject><subject>Methods</subject><subject>Newton approximation methods</subject><subject>Newtons method</subject><subject>Nonlinear equations</subject><subject>Numerical analysis</subject><subject>Numerical methods</subject><subject>Perceptron convergence procedure</subject><subject>R&D</subject><subject>Research & development</subject><issn>0036-1429</issn><issn>1095-7170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1968</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNo90E1LAzEQBuAgCtYP_AMeghdPqzP53ByltFoorqCel2yT1S1t0iZbxX_vSounYeCZGeYl5ArhDpHre9AgQeojMkIwstCo4ZiMALgqUDBzSs5yXsLQl8hHZFoF-hpXX134oM8xrLrgbaKT7c72XQyZfnf9J7W0Cr54scmufe8TrTY-2T4mOls33rlh9oKctHaV_eWhnpP36eRt_FTMq8fZ-GFeLBjwvuBcI4rSKmZ8YxpkXDmjypJzz1EKI9vWaQ3MaclQOPSgGyw1SqekV7Dg5-Rmv3eT4nbnc18v4y6F4WRtGAMlwOCAbvdokWLOybf1JnVrm35qhPovo_qQ0SCv93KZh3f-GTPCCCb4L-psXxA</recordid><startdate>19681201</startdate><enddate>19681201</enddate><creator>Meyer, Gunter H.</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>19681201</creationdate><title>On Solving Nonlinear Equations with a One-Parameter Operator Imbedding</title><author>Meyer, Gunter H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c203t-3371148a629eb9b1236d968833e315495ffd7702d75214d1e07b18715d65e60c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1968</creationdate><topic>Differential equations</topic><topic>Embeddings</topic><topic>Eulers method</topic><topic>Existence theorems</topic><topic>Hypotheses</topic><topic>Methods</topic><topic>Newton approximation methods</topic><topic>Newtons method</topic><topic>Nonlinear equations</topic><topic>Numerical analysis</topic><topic>Numerical methods</topic><topic>Perceptron convergence procedure</topic><topic>R&D</topic><topic>Research & development</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meyer, Gunter H.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>ABI/INFORM global</collection><collection>Agriculture Science Database</collection><collection>Computing Database</collection><collection>Military Database (Proquest)</collection><collection>ProQuest research library</collection><collection>ProQuest Science Journals</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on numerical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meyer, Gunter H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Solving Nonlinear Equations with a One-Parameter Operator Imbedding</atitle><jtitle>SIAM journal on numerical analysis</jtitle><date>1968-12-01</date><risdate>1968</risdate><volume>5</volume><issue>4</issue><spage>739</spage><epage>752</epage><pages>739-752</pages><issn>0036-1429</issn><eissn>1095-7170</eissn><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/0705057</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-1429 |
ispartof | SIAM journal on numerical analysis, 1968-12, Vol.5 (4), p.739-752 |
issn | 0036-1429 1095-7170 |
language | eng |
recordid | cdi_proquest_journals_922064091 |
source | Jstor Complete Legacy; SIAM journals (Society for Industrial and Applied Mathematics); JSTOR |
subjects | Differential equations Embeddings Eulers method Existence theorems Hypotheses Methods Newton approximation methods Newtons method Nonlinear equations Numerical analysis Numerical methods Perceptron convergence procedure R&D Research & development |
title | On Solving Nonlinear Equations with a One-Parameter Operator Imbedding |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T07%3A54%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Solving%20Nonlinear%20Equations%20with%20a%20One-Parameter%20Operator%20Imbedding&rft.jtitle=SIAM%20journal%20on%20numerical%20analysis&rft.au=Meyer,%20Gunter%20H.&rft.date=1968-12-01&rft.volume=5&rft.issue=4&rft.spage=739&rft.epage=752&rft.pages=739-752&rft.issn=0036-1429&rft.eissn=1095-7170&rft_id=info:doi/10.1137/0705057&rft_dat=%3Cjstor_proqu%3E2949424%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=922064091&rft_id=info:pmid/&rft_jstor_id=2949424&rfr_iscdi=true |