A Variant of Huber Robust Regression

In this paper, we develop a variant of Huber robust regression. Our approach is inspired by Huber's $M$ estimates; however, we deal with the scale estimate differently. The class of estimators we develop includes least squares and least absolute residuals as limiting cases and can be considered...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on scientific and statistical computing 1984-09, Vol.5 (3), p.720-734
Hauptverfasser: Boncelet, Jr, Charles G., Dickinson, Bradley W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 734
container_issue 3
container_start_page 720
container_title SIAM journal on scientific and statistical computing
container_volume 5
creator Boncelet, Jr, Charles G.
Dickinson, Bradley W.
description In this paper, we develop a variant of Huber robust regression. Our approach is inspired by Huber's $M$ estimates; however, we deal with the scale estimate differently. The class of estimators we develop includes least squares and least absolute residuals as limiting cases and can be considered as a generalization of the trimmed mean to regression. We exhibit an algorithm to compute these estimates and prove its correctness. Also, we show how to extend our estimators to include weighting, equality and inequality constraints, and the addition or deletion of data points.
doi_str_mv 10.1137/0905051
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_921734582</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2588376331</sourcerecordid><originalsourceid>FETCH-LOGICAL-c182t-6c71e3a69fbdc47eff13745f29f26bfdf25e61c8e7b53e55df8c560ae41ee113</originalsourceid><addsrcrecordid>eNotkE1LAzEURYMoOFbxLwQRXI3m5XOyLEWtUBBKcRsymReZopOazCz89460q7s53Hu4hNwCewQQ5olZppiCM1Jx0E0tJJhzUjGwulacyUtyVcqeMQHKyorcL-mHz70fRpoiXU8tZrpN7VRGusXPjKX0abgmF9F_Fbw55YLsXp53q3W9eX99Wy03dYCGj7UOBlB4bWPbBWkwxtlHqsht5LqNXeQKNYQGTasEKtXFJijNPEpAnN0X5O5Ye8jpZ8Iyun2a8jAvOsvBCKkaPkMPRyjkVErG6A65__b51wFz_we40wHiD6VfSwA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>921734582</pqid></control><display><type>article</type><title>A Variant of Huber Robust Regression</title><source>SIAM Journals Online</source><creator>Boncelet, Jr, Charles G. ; Dickinson, Bradley W.</creator><creatorcontrib>Boncelet, Jr, Charles G. ; Dickinson, Bradley W.</creatorcontrib><description>In this paper, we develop a variant of Huber robust regression. Our approach is inspired by Huber's $M$ estimates; however, we deal with the scale estimate differently. The class of estimators we develop includes least squares and least absolute residuals as limiting cases and can be considered as a generalization of the trimmed mean to regression. We exhibit an algorithm to compute these estimates and prove its correctness. Also, we show how to extend our estimators to include weighting, equality and inequality constraints, and the addition or deletion of data points.</description><identifier>ISSN: 0196-5204</identifier><identifier>ISSN: 1064-8275</identifier><identifier>EISSN: 2168-3417</identifier><identifier>EISSN: 1095-7197</identifier><identifier>DOI: 10.1137/0905051</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Algorithms ; Estimates ; Regression analysis</subject><ispartof>SIAM journal on scientific and statistical computing, 1984-09, Vol.5 (3), p.720-734</ispartof><rights>[Copyright] © 1984 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c182t-6c71e3a69fbdc47eff13745f29f26bfdf25e61c8e7b53e55df8c560ae41ee113</citedby><cites>FETCH-LOGICAL-c182t-6c71e3a69fbdc47eff13745f29f26bfdf25e61c8e7b53e55df8c560ae41ee113</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Boncelet, Jr, Charles G.</creatorcontrib><creatorcontrib>Dickinson, Bradley W.</creatorcontrib><title>A Variant of Huber Robust Regression</title><title>SIAM journal on scientific and statistical computing</title><description>In this paper, we develop a variant of Huber robust regression. Our approach is inspired by Huber's $M$ estimates; however, we deal with the scale estimate differently. The class of estimators we develop includes least squares and least absolute residuals as limiting cases and can be considered as a generalization of the trimmed mean to regression. We exhibit an algorithm to compute these estimates and prove its correctness. Also, we show how to extend our estimators to include weighting, equality and inequality constraints, and the addition or deletion of data points.</description><subject>Algorithms</subject><subject>Estimates</subject><subject>Regression analysis</subject><issn>0196-5204</issn><issn>1064-8275</issn><issn>2168-3417</issn><issn>1095-7197</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1984</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNotkE1LAzEURYMoOFbxLwQRXI3m5XOyLEWtUBBKcRsymReZopOazCz89460q7s53Hu4hNwCewQQ5olZppiCM1Jx0E0tJJhzUjGwulacyUtyVcqeMQHKyorcL-mHz70fRpoiXU8tZrpN7VRGusXPjKX0abgmF9F_Fbw55YLsXp53q3W9eX99Wy03dYCGj7UOBlB4bWPbBWkwxtlHqsht5LqNXeQKNYQGTasEKtXFJijNPEpAnN0X5O5Ye8jpZ8Iyun2a8jAvOsvBCKkaPkMPRyjkVErG6A65__b51wFz_we40wHiD6VfSwA</recordid><startdate>19840901</startdate><enddate>19840901</enddate><creator>Boncelet, Jr, Charles G.</creator><creator>Dickinson, Bradley W.</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>19840901</creationdate><title>A Variant of Huber Robust Regression</title><author>Boncelet, Jr, Charles G. ; Dickinson, Bradley W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c182t-6c71e3a69fbdc47eff13745f29f26bfdf25e61c8e7b53e55df8c560ae41ee113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1984</creationdate><topic>Algorithms</topic><topic>Estimates</topic><topic>Regression analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boncelet, Jr, Charles G.</creatorcontrib><creatorcontrib>Dickinson, Bradley W.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on scientific and statistical computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boncelet, Jr, Charles G.</au><au>Dickinson, Bradley W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Variant of Huber Robust Regression</atitle><jtitle>SIAM journal on scientific and statistical computing</jtitle><date>1984-09-01</date><risdate>1984</risdate><volume>5</volume><issue>3</issue><spage>720</spage><epage>734</epage><pages>720-734</pages><issn>0196-5204</issn><issn>1064-8275</issn><eissn>2168-3417</eissn><eissn>1095-7197</eissn><abstract>In this paper, we develop a variant of Huber robust regression. Our approach is inspired by Huber's $M$ estimates; however, we deal with the scale estimate differently. The class of estimators we develop includes least squares and least absolute residuals as limiting cases and can be considered as a generalization of the trimmed mean to regression. We exhibit an algorithm to compute these estimates and prove its correctness. Also, we show how to extend our estimators to include weighting, equality and inequality constraints, and the addition or deletion of data points.</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/0905051</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0196-5204
ispartof SIAM journal on scientific and statistical computing, 1984-09, Vol.5 (3), p.720-734
issn 0196-5204
1064-8275
2168-3417
1095-7197
language eng
recordid cdi_proquest_journals_921734582
source SIAM Journals Online
subjects Algorithms
Estimates
Regression analysis
title A Variant of Huber Robust Regression
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T14%3A32%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Variant%20of%20Huber%20Robust%20Regression&rft.jtitle=SIAM%20journal%20on%20scientific%20and%20statistical%20computing&rft.au=Boncelet,%20Jr,%20Charles%20G.&rft.date=1984-09-01&rft.volume=5&rft.issue=3&rft.spage=720&rft.epage=734&rft.pages=720-734&rft.issn=0196-5204&rft.eissn=2168-3417&rft_id=info:doi/10.1137/0905051&rft_dat=%3Cproquest_cross%3E2588376331%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=921734582&rft_id=info:pmid/&rfr_iscdi=true