Domain decomposition with local mesh refinement
A preconditioned Krylov iterative algorithm based on domain decomposition for linear systems arising from implicit finite-difference or finite-element discretizations of partial differential equation problems requiring local mesh refinement is described. To keep data structures as simple as possible...
Gespeichert in:
Veröffentlicht in: | SIAM journal on scientific and statistical computing 1992-07, Vol.13 (4), p.967-993 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 993 |
---|---|
container_issue | 4 |
container_start_page | 967 |
container_title | SIAM journal on scientific and statistical computing |
container_volume | 13 |
creator | GROPP, W. D KEYES, D. E |
description | A preconditioned Krylov iterative algorithm based on domain decomposition for linear systems arising from implicit finite-difference or finite-element discretizations of partial differential equation problems requiring local mesh refinement is described. To keep data structures as simple as possible for parallel computing applications, the fundamental computational unit in the algorithm is defined as a subregion of the domain spanned by a locally uniform tensor-product grid, called a tile. In the tile-based domain decomposition approach, two levels of discretization are considered at each point of the domain: a global coarse grid defined by tile vertices only, and a local fine grid where the degree of resolution can vary from tile to tile. One global level and one local level provide the flexibility required to adaptively discretize a diverse collection of problems on irregular regions and solve them at convergence rates that deteriorate only logarithmically in the finest mesh parameter, with the coarse tessellation held fixed. A logarithmic departure from optimality seems to be a reasonable compromise for the simplicity of the composite grid data structure and concomitant regular data exchange patterns in a multiprocessor environment. Some experiments with up to 1024 tiles are reported, and the evolution of the algorithm is commented on and contrasted with optimal nonrefining two-level algorithms and optimal refining multilevel algorithms. Computational comparisons with some other popular methods are presented. |
doi_str_mv | 10.1137/0913057 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_921683543</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2588008041</sourcerecordid><originalsourceid>FETCH-LOGICAL-c211t-c1d0477ca82701ce916ba082d4d1eb4ebbfe1eddc02dfb298f17768e69c478df3</originalsourceid><addsrcrecordid>eNo9kE1LwzAYx4MoOKf4FYoInuryJGmTHGXOFxh40XNJkycso21m0iF-ezs2PP0vP_5vhNwCfQTgckE1cFrJMzJjUKuSC5DnZEZB12XFqLgkVzlvKeVQaTEji-fYmzAUDm3sdzGHMcSh-AnjpuiiNV3RY94UCX0YsMdhvCYX3nQZb046J18vq8_lW7n-eH1fPq1LywDG0oKjQkprFJMULGqoW0MVc8IBtgLb1iOgc5Yy51umlQcpa4W1tkIq5_mc3B19dyl-7zGPzTbu0zBFNvqwi1eCT9DDEbIp5jyVbHYp9Cb9NkCbwxnN6YyJvD_ZmTyt8skMNuR_XFSiUkD5H-b_XNs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>921683543</pqid></control><display><type>article</type><title>Domain decomposition with local mesh refinement</title><source>SIAM Journals Online</source><creator>GROPP, W. D ; KEYES, D. E</creator><creatorcontrib>GROPP, W. D ; KEYES, D. E</creatorcontrib><description>A preconditioned Krylov iterative algorithm based on domain decomposition for linear systems arising from implicit finite-difference or finite-element discretizations of partial differential equation problems requiring local mesh refinement is described. To keep data structures as simple as possible for parallel computing applications, the fundamental computational unit in the algorithm is defined as a subregion of the domain spanned by a locally uniform tensor-product grid, called a tile. In the tile-based domain decomposition approach, two levels of discretization are considered at each point of the domain: a global coarse grid defined by tile vertices only, and a local fine grid where the degree of resolution can vary from tile to tile. One global level and one local level provide the flexibility required to adaptively discretize a diverse collection of problems on irregular regions and solve them at convergence rates that deteriorate only logarithmically in the finest mesh parameter, with the coarse tessellation held fixed. A logarithmic departure from optimality seems to be a reasonable compromise for the simplicity of the composite grid data structure and concomitant regular data exchange patterns in a multiprocessor environment. Some experiments with up to 1024 tiles are reported, and the evolution of the algorithm is commented on and contrasted with optimal nonrefining two-level algorithms and optimal refining multilevel algorithms. Computational comparisons with some other popular methods are presented.</description><identifier>ISSN: 0196-5204</identifier><identifier>ISSN: 1064-8275</identifier><identifier>EISSN: 2168-3417</identifier><identifier>EISSN: 1095-7197</identifier><identifier>DOI: 10.1137/0913057</identifier><identifier>CODEN: SIJCD4</identifier><language>eng</language><publisher>Philadelphia, PA: Society for Industrial and Applied Mathematics</publisher><subject>Algorithms ; Computer science ; Decomposition ; Exact sciences and technology ; Experiments ; Iterative methods ; Laboratories ; Mathematics ; Numerical analysis ; Numerical analysis. Scientific computation ; Partial differential equations ; Partial differential equations, boundary value problems ; Sciences and techniques of general use</subject><ispartof>SIAM journal on scientific and statistical computing, 1992-07, Vol.13 (4), p.967-993</ispartof><rights>1993 INIST-CNRS</rights><rights>[Copyright] © 1992 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c211t-c1d0477ca82701ce916ba082d4d1eb4ebbfe1eddc02dfb298f17768e69c478df3</citedby><cites>FETCH-LOGICAL-c211t-c1d0477ca82701ce916ba082d4d1eb4ebbfe1eddc02dfb298f17768e69c478df3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=4545810$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>GROPP, W. D</creatorcontrib><creatorcontrib>KEYES, D. E</creatorcontrib><title>Domain decomposition with local mesh refinement</title><title>SIAM journal on scientific and statistical computing</title><description>A preconditioned Krylov iterative algorithm based on domain decomposition for linear systems arising from implicit finite-difference or finite-element discretizations of partial differential equation problems requiring local mesh refinement is described. To keep data structures as simple as possible for parallel computing applications, the fundamental computational unit in the algorithm is defined as a subregion of the domain spanned by a locally uniform tensor-product grid, called a tile. In the tile-based domain decomposition approach, two levels of discretization are considered at each point of the domain: a global coarse grid defined by tile vertices only, and a local fine grid where the degree of resolution can vary from tile to tile. One global level and one local level provide the flexibility required to adaptively discretize a diverse collection of problems on irregular regions and solve them at convergence rates that deteriorate only logarithmically in the finest mesh parameter, with the coarse tessellation held fixed. A logarithmic departure from optimality seems to be a reasonable compromise for the simplicity of the composite grid data structure and concomitant regular data exchange patterns in a multiprocessor environment. Some experiments with up to 1024 tiles are reported, and the evolution of the algorithm is commented on and contrasted with optimal nonrefining two-level algorithms and optimal refining multilevel algorithms. Computational comparisons with some other popular methods are presented.</description><subject>Algorithms</subject><subject>Computer science</subject><subject>Decomposition</subject><subject>Exact sciences and technology</subject><subject>Experiments</subject><subject>Iterative methods</subject><subject>Laboratories</subject><subject>Mathematics</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Partial differential equations</subject><subject>Partial differential equations, boundary value problems</subject><subject>Sciences and techniques of general use</subject><issn>0196-5204</issn><issn>1064-8275</issn><issn>2168-3417</issn><issn>1095-7197</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNo9kE1LwzAYx4MoOKf4FYoInuryJGmTHGXOFxh40XNJkycso21m0iF-ezs2PP0vP_5vhNwCfQTgckE1cFrJMzJjUKuSC5DnZEZB12XFqLgkVzlvKeVQaTEji-fYmzAUDm3sdzGHMcSh-AnjpuiiNV3RY94UCX0YsMdhvCYX3nQZb046J18vq8_lW7n-eH1fPq1LywDG0oKjQkprFJMULGqoW0MVc8IBtgLb1iOgc5Yy51umlQcpa4W1tkIq5_mc3B19dyl-7zGPzTbu0zBFNvqwi1eCT9DDEbIp5jyVbHYp9Cb9NkCbwxnN6YyJvD_ZmTyt8skMNuR_XFSiUkD5H-b_XNs</recordid><startdate>19920701</startdate><enddate>19920701</enddate><creator>GROPP, W. D</creator><creator>KEYES, D. E</creator><general>Society for Industrial and Applied Mathematics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>19920701</creationdate><title>Domain decomposition with local mesh refinement</title><author>GROPP, W. D ; KEYES, D. E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c211t-c1d0477ca82701ce916ba082d4d1eb4ebbfe1eddc02dfb298f17768e69c478df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><topic>Algorithms</topic><topic>Computer science</topic><topic>Decomposition</topic><topic>Exact sciences and technology</topic><topic>Experiments</topic><topic>Iterative methods</topic><topic>Laboratories</topic><topic>Mathematics</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Partial differential equations</topic><topic>Partial differential equations, boundary value problems</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>GROPP, W. D</creatorcontrib><creatorcontrib>KEYES, D. E</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on scientific and statistical computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>GROPP, W. D</au><au>KEYES, D. E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Domain decomposition with local mesh refinement</atitle><jtitle>SIAM journal on scientific and statistical computing</jtitle><date>1992-07-01</date><risdate>1992</risdate><volume>13</volume><issue>4</issue><spage>967</spage><epage>993</epage><pages>967-993</pages><issn>0196-5204</issn><issn>1064-8275</issn><eissn>2168-3417</eissn><eissn>1095-7197</eissn><coden>SIJCD4</coden><abstract>A preconditioned Krylov iterative algorithm based on domain decomposition for linear systems arising from implicit finite-difference or finite-element discretizations of partial differential equation problems requiring local mesh refinement is described. To keep data structures as simple as possible for parallel computing applications, the fundamental computational unit in the algorithm is defined as a subregion of the domain spanned by a locally uniform tensor-product grid, called a tile. In the tile-based domain decomposition approach, two levels of discretization are considered at each point of the domain: a global coarse grid defined by tile vertices only, and a local fine grid where the degree of resolution can vary from tile to tile. One global level and one local level provide the flexibility required to adaptively discretize a diverse collection of problems on irregular regions and solve them at convergence rates that deteriorate only logarithmically in the finest mesh parameter, with the coarse tessellation held fixed. A logarithmic departure from optimality seems to be a reasonable compromise for the simplicity of the composite grid data structure and concomitant regular data exchange patterns in a multiprocessor environment. Some experiments with up to 1024 tiles are reported, and the evolution of the algorithm is commented on and contrasted with optimal nonrefining two-level algorithms and optimal refining multilevel algorithms. Computational comparisons with some other popular methods are presented.</abstract><cop>Philadelphia, PA</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/0913057</doi><tpages>27</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0196-5204 |
ispartof | SIAM journal on scientific and statistical computing, 1992-07, Vol.13 (4), p.967-993 |
issn | 0196-5204 1064-8275 2168-3417 1095-7197 |
language | eng |
recordid | cdi_proquest_journals_921683543 |
source | SIAM Journals Online |
subjects | Algorithms Computer science Decomposition Exact sciences and technology Experiments Iterative methods Laboratories Mathematics Numerical analysis Numerical analysis. Scientific computation Partial differential equations Partial differential equations, boundary value problems Sciences and techniques of general use |
title | Domain decomposition with local mesh refinement |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T10%3A21%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Domain%20decomposition%20with%20local%20mesh%20refinement&rft.jtitle=SIAM%20journal%20on%20scientific%20and%20statistical%20computing&rft.au=GROPP,%20W.%20D&rft.date=1992-07-01&rft.volume=13&rft.issue=4&rft.spage=967&rft.epage=993&rft.pages=967-993&rft.issn=0196-5204&rft.eissn=2168-3417&rft.coden=SIJCD4&rft_id=info:doi/10.1137/0913057&rft_dat=%3Cproquest_cross%3E2588008041%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=921683543&rft_id=info:pmid/&rfr_iscdi=true |