Evaluating best-case and worst-case variances when bounds are available

This paper describes procedures for computing the tightest possible best-case and worst-case bounds on the variance of a discrete, bounded, random variable when lower and upper bounds are available for its unknown probability mass function. An example from the application of the Monte Carlo method t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on scientific and statistical computing 1992-11, Vol.13 (6), p.1347-1360
Hauptverfasser: FISHMAN, G. S, GRANOVSKY, B. L, RUBIN, D. S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1360
container_issue 6
container_start_page 1347
container_title SIAM journal on scientific and statistical computing
container_volume 13
creator FISHMAN, G. S
GRANOVSKY, B. L
RUBIN, D. S
description This paper describes procedures for computing the tightest possible best-case and worst-case bounds on the variance of a discrete, bounded, random variable when lower and upper bounds are available for its unknown probability mass function. An example from the application of the Monte Carlo method to the estimation of network reliability illustrates the procedures and, in particular, reveals considerable tightening in the worst-case bound when compared to the trivial worst-case bound based exclusively on range.
doi_str_mv 10.1137/0913076
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_921663978</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2587941371</sourcerecordid><originalsourceid>FETCH-LOGICAL-c211t-bd0ac00a5152338223a9f38ac37dad828f47d0d0d588c4bd2bfafad84fb1fd73</originalsourceid><addsrcrecordid>eNo9kFtLw0AQhRdRMFbxLwQRfIrOXpLdPEqpVSj40vcwe9OUmNTdpsV_75ZGmYdhmI8zcw4htxQeKeXyCWrKQVZnJGO0UgUXVJ6TDGhdFSUDcUmuYtwAcFrWIiPLxR67EXdt_5FrF3eFwehy7G1-GMLfuMfQYm9czA-frs_1MPY25hgSuMe2Q925a3LhsYvuZuozsn5ZrOevxep9-TZ_XhWGUbortAU0AFjSknGuGONYe67QcGnRKqa8kBZSlUoZoS3THn1aCK-pt5LPyN1JdhuG7zH922yGMfTpYlMnuxWvpUrQwwkyYYgxON9sQ_uF4aeh0BwzaqaMEnk_yWE02PmQXLbxHxcVBwYV_wXi9GUo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>921663978</pqid></control><display><type>article</type><title>Evaluating best-case and worst-case variances when bounds are available</title><source>SIAM Journals Online</source><creator>FISHMAN, G. S ; GRANOVSKY, B. L ; RUBIN, D. S</creator><creatorcontrib>FISHMAN, G. S ; GRANOVSKY, B. L ; RUBIN, D. S</creatorcontrib><description>This paper describes procedures for computing the tightest possible best-case and worst-case bounds on the variance of a discrete, bounded, random variable when lower and upper bounds are available for its unknown probability mass function. An example from the application of the Monte Carlo method to the estimation of network reliability illustrates the procedures and, in particular, reveals considerable tightening in the worst-case bound when compared to the trivial worst-case bound based exclusively on range.</description><identifier>ISSN: 0196-5204</identifier><identifier>ISSN: 1064-8275</identifier><identifier>EISSN: 2168-3417</identifier><identifier>EISSN: 1095-7197</identifier><identifier>DOI: 10.1137/0913076</identifier><identifier>CODEN: SIJCD4</identifier><language>eng</language><publisher>Philadelphia, PA: Society for Industrial and Applied Mathematics</publisher><subject>Algorithms ; Exact sciences and technology ; Lagrange multiplier ; Linear programming ; Mathematical foundations ; Mathematics ; Probability and statistics ; Random variables ; Sciences and techniques of general use ; Statistics</subject><ispartof>SIAM journal on scientific and statistical computing, 1992-11, Vol.13 (6), p.1347-1360</ispartof><rights>1993 INIST-CNRS</rights><rights>[Copyright] © 1992 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c211t-bd0ac00a5152338223a9f38ac37dad828f47d0d0d588c4bd2bfafad84fb1fd73</citedby><cites>FETCH-LOGICAL-c211t-bd0ac00a5152338223a9f38ac37dad828f47d0d0d588c4bd2bfafad84fb1fd73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=4630206$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>FISHMAN, G. S</creatorcontrib><creatorcontrib>GRANOVSKY, B. L</creatorcontrib><creatorcontrib>RUBIN, D. S</creatorcontrib><title>Evaluating best-case and worst-case variances when bounds are available</title><title>SIAM journal on scientific and statistical computing</title><description>This paper describes procedures for computing the tightest possible best-case and worst-case bounds on the variance of a discrete, bounded, random variable when lower and upper bounds are available for its unknown probability mass function. An example from the application of the Monte Carlo method to the estimation of network reliability illustrates the procedures and, in particular, reveals considerable tightening in the worst-case bound when compared to the trivial worst-case bound based exclusively on range.</description><subject>Algorithms</subject><subject>Exact sciences and technology</subject><subject>Lagrange multiplier</subject><subject>Linear programming</subject><subject>Mathematical foundations</subject><subject>Mathematics</subject><subject>Probability and statistics</subject><subject>Random variables</subject><subject>Sciences and techniques of general use</subject><subject>Statistics</subject><issn>0196-5204</issn><issn>1064-8275</issn><issn>2168-3417</issn><issn>1095-7197</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNo9kFtLw0AQhRdRMFbxLwQRfIrOXpLdPEqpVSj40vcwe9OUmNTdpsV_75ZGmYdhmI8zcw4htxQeKeXyCWrKQVZnJGO0UgUXVJ6TDGhdFSUDcUmuYtwAcFrWIiPLxR67EXdt_5FrF3eFwehy7G1-GMLfuMfQYm9czA-frs_1MPY25hgSuMe2Q925a3LhsYvuZuozsn5ZrOevxep9-TZ_XhWGUbortAU0AFjSknGuGONYe67QcGnRKqa8kBZSlUoZoS3THn1aCK-pt5LPyN1JdhuG7zH922yGMfTpYlMnuxWvpUrQwwkyYYgxON9sQ_uF4aeh0BwzaqaMEnk_yWE02PmQXLbxHxcVBwYV_wXi9GUo</recordid><startdate>19921101</startdate><enddate>19921101</enddate><creator>FISHMAN, G. S</creator><creator>GRANOVSKY, B. L</creator><creator>RUBIN, D. S</creator><general>Society for Industrial and Applied Mathematics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>19921101</creationdate><title>Evaluating best-case and worst-case variances when bounds are available</title><author>FISHMAN, G. S ; GRANOVSKY, B. L ; RUBIN, D. S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c211t-bd0ac00a5152338223a9f38ac37dad828f47d0d0d588c4bd2bfafad84fb1fd73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><topic>Algorithms</topic><topic>Exact sciences and technology</topic><topic>Lagrange multiplier</topic><topic>Linear programming</topic><topic>Mathematical foundations</topic><topic>Mathematics</topic><topic>Probability and statistics</topic><topic>Random variables</topic><topic>Sciences and techniques of general use</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>FISHMAN, G. S</creatorcontrib><creatorcontrib>GRANOVSKY, B. L</creatorcontrib><creatorcontrib>RUBIN, D. S</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on scientific and statistical computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>FISHMAN, G. S</au><au>GRANOVSKY, B. L</au><au>RUBIN, D. S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluating best-case and worst-case variances when bounds are available</atitle><jtitle>SIAM journal on scientific and statistical computing</jtitle><date>1992-11-01</date><risdate>1992</risdate><volume>13</volume><issue>6</issue><spage>1347</spage><epage>1360</epage><pages>1347-1360</pages><issn>0196-5204</issn><issn>1064-8275</issn><eissn>2168-3417</eissn><eissn>1095-7197</eissn><coden>SIJCD4</coden><abstract>This paper describes procedures for computing the tightest possible best-case and worst-case bounds on the variance of a discrete, bounded, random variable when lower and upper bounds are available for its unknown probability mass function. An example from the application of the Monte Carlo method to the estimation of network reliability illustrates the procedures and, in particular, reveals considerable tightening in the worst-case bound when compared to the trivial worst-case bound based exclusively on range.</abstract><cop>Philadelphia, PA</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/0913076</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0196-5204
ispartof SIAM journal on scientific and statistical computing, 1992-11, Vol.13 (6), p.1347-1360
issn 0196-5204
1064-8275
2168-3417
1095-7197
language eng
recordid cdi_proquest_journals_921663978
source SIAM Journals Online
subjects Algorithms
Exact sciences and technology
Lagrange multiplier
Linear programming
Mathematical foundations
Mathematics
Probability and statistics
Random variables
Sciences and techniques of general use
Statistics
title Evaluating best-case and worst-case variances when bounds are available
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T12%3A51%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluating%20best-case%20and%20worst-case%20variances%20when%20bounds%20are%20available&rft.jtitle=SIAM%20journal%20on%20scientific%20and%20statistical%20computing&rft.au=FISHMAN,%20G.%20S&rft.date=1992-11-01&rft.volume=13&rft.issue=6&rft.spage=1347&rft.epage=1360&rft.pages=1347-1360&rft.issn=0196-5204&rft.eissn=2168-3417&rft.coden=SIJCD4&rft_id=info:doi/10.1137/0913076&rft_dat=%3Cproquest_cross%3E2587941371%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=921663978&rft_id=info:pmid/&rfr_iscdi=true