A limited memory algorithm for bound constrained optimization
An algorithm for solving large nonlinear optimization problems with simple bounds is described. It is based on the gradient projection method and uses a limited memory BFGS matrix to approximate the Hessian of the objective function. It is shown how to take advantage of the form of the limited memor...
Gespeichert in:
Veröffentlicht in: | SIAM journal on scientific computing 1995-09, Vol.16 (5), p.1190-1208 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1208 |
---|---|
container_issue | 5 |
container_start_page | 1190 |
container_title | SIAM journal on scientific computing |
container_volume | 16 |
creator | BYRD, R. H PEIHUANG LU NOCEDAL, J CIYOU ZHU |
description | An algorithm for solving large nonlinear optimization problems with simple bounds is described. It is based on the gradient projection method and uses a limited memory BFGS matrix to approximate the Hessian of the objective function. It is shown how to take advantage of the form of the limited memory approximation to implement the algorithm efficiently. The results of numerical tests on a set of large problems are reported. |
doi_str_mv | 10.1137/0916069 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_921565075</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2587159921</sourcerecordid><originalsourceid>FETCH-LOGICAL-c310t-3052252a7f991bb119ea6fb43e70aeee380f12a3003b914447d42bfa706194633</originalsourceid><addsrcrecordid>eNo90E1Lw0AQBuBFFKxV_AtBBE_Rmf3sHjyU4hcUvOg5bNJd3ZJk4-72UH-9KQ2eZg7PvAMvIdcI94hMPYBGCVKfkBmCFqVCrU4Pu-TlgipxTi5S2gKg5JrOyOOyaH3ns90Une1C3Bem_QrR5--ucCEWddj1m6IJfcrR-H5kYcjjwa_JPvSX5MyZNtmrac7J5_PTx-q1XL-_vK2W67JhCLlkICgV1CinNdY1orZGupozq8BYa9kCHFLDAFitkXOuNpzWziiQqLlkbE5ujrlDDD87m3K1DbvYjy8rTVFIAUqM6O6ImhhSitZVQ_SdifsKoTpUU03VjPJ2ijOpMa2Lpm98-udMKlRasD9hhmCw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>921565075</pqid></control><display><type>article</type><title>A limited memory algorithm for bound constrained optimization</title><source>SIAM Journals Online</source><creator>BYRD, R. H ; PEIHUANG LU ; NOCEDAL, J ; CIYOU ZHU</creator><creatorcontrib>BYRD, R. H ; PEIHUANG LU ; NOCEDAL, J ; CIYOU ZHU</creatorcontrib><description>An algorithm for solving large nonlinear optimization problems with simple bounds is described. It is based on the gradient projection method and uses a limited memory BFGS matrix to approximate the Hessian of the objective function. It is shown how to take advantage of the form of the limited memory approximation to implement the algorithm efficiently. The results of numerical tests on a set of large problems are reported.</description><identifier>ISSN: 1064-8275</identifier><identifier>EISSN: 1095-7197</identifier><identifier>DOI: 10.1137/0916069</identifier><identifier>CODEN: SJOCE3</identifier><language>eng</language><publisher>Philadelphia, PA: Society for Industrial and Applied Mathematics</publisher><subject>Algorithms ; Applied sciences ; Approximation ; Calculus of variations and optimal control ; Computer science ; Exact sciences and technology ; Grants ; Mathematical analysis ; Mathematics ; Operational research and scientific management ; Operational research. Management science ; Optimization ; Optimization. Search problems ; Sciences and techniques of general use</subject><ispartof>SIAM journal on scientific computing, 1995-09, Vol.16 (5), p.1190-1208</ispartof><rights>1995 INIST-CNRS</rights><rights>[Copyright] © 1995 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c310t-3052252a7f991bb119ea6fb43e70aeee380f12a3003b914447d42bfa706194633</citedby><cites>FETCH-LOGICAL-c310t-3052252a7f991bb119ea6fb43e70aeee380f12a3003b914447d42bfa706194633</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3182,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=3671795$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>BYRD, R. H</creatorcontrib><creatorcontrib>PEIHUANG LU</creatorcontrib><creatorcontrib>NOCEDAL, J</creatorcontrib><creatorcontrib>CIYOU ZHU</creatorcontrib><title>A limited memory algorithm for bound constrained optimization</title><title>SIAM journal on scientific computing</title><description>An algorithm for solving large nonlinear optimization problems with simple bounds is described. It is based on the gradient projection method and uses a limited memory BFGS matrix to approximate the Hessian of the objective function. It is shown how to take advantage of the form of the limited memory approximation to implement the algorithm efficiently. The results of numerical tests on a set of large problems are reported.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Approximation</subject><subject>Calculus of variations and optimal control</subject><subject>Computer science</subject><subject>Exact sciences and technology</subject><subject>Grants</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Optimization</subject><subject>Optimization. Search problems</subject><subject>Sciences and techniques of general use</subject><issn>1064-8275</issn><issn>1095-7197</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNo90E1Lw0AQBuBFFKxV_AtBBE_Rmf3sHjyU4hcUvOg5bNJd3ZJk4-72UH-9KQ2eZg7PvAMvIdcI94hMPYBGCVKfkBmCFqVCrU4Pu-TlgipxTi5S2gKg5JrOyOOyaH3ns90Une1C3Bem_QrR5--ucCEWddj1m6IJfcrR-H5kYcjjwa_JPvSX5MyZNtmrac7J5_PTx-q1XL-_vK2W67JhCLlkICgV1CinNdY1orZGupozq8BYa9kCHFLDAFitkXOuNpzWziiQqLlkbE5ujrlDDD87m3K1DbvYjy8rTVFIAUqM6O6ImhhSitZVQ_SdifsKoTpUU03VjPJ2ijOpMa2Lpm98-udMKlRasD9hhmCw</recordid><startdate>19950901</startdate><enddate>19950901</enddate><creator>BYRD, R. H</creator><creator>PEIHUANG LU</creator><creator>NOCEDAL, J</creator><creator>CIYOU ZHU</creator><general>Society for Industrial and Applied Mathematics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>19950901</creationdate><title>A limited memory algorithm for bound constrained optimization</title><author>BYRD, R. H ; PEIHUANG LU ; NOCEDAL, J ; CIYOU ZHU</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c310t-3052252a7f991bb119ea6fb43e70aeee380f12a3003b914447d42bfa706194633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Approximation</topic><topic>Calculus of variations and optimal control</topic><topic>Computer science</topic><topic>Exact sciences and technology</topic><topic>Grants</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Optimization</topic><topic>Optimization. Search problems</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>BYRD, R. H</creatorcontrib><creatorcontrib>PEIHUANG LU</creatorcontrib><creatorcontrib>NOCEDAL, J</creatorcontrib><creatorcontrib>CIYOU ZHU</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on scientific computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>BYRD, R. H</au><au>PEIHUANG LU</au><au>NOCEDAL, J</au><au>CIYOU ZHU</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A limited memory algorithm for bound constrained optimization</atitle><jtitle>SIAM journal on scientific computing</jtitle><date>1995-09-01</date><risdate>1995</risdate><volume>16</volume><issue>5</issue><spage>1190</spage><epage>1208</epage><pages>1190-1208</pages><issn>1064-8275</issn><eissn>1095-7197</eissn><coden>SJOCE3</coden><abstract>An algorithm for solving large nonlinear optimization problems with simple bounds is described. It is based on the gradient projection method and uses a limited memory BFGS matrix to approximate the Hessian of the objective function. It is shown how to take advantage of the form of the limited memory approximation to implement the algorithm efficiently. The results of numerical tests on a set of large problems are reported.</abstract><cop>Philadelphia, PA</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/0916069</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1064-8275 |
ispartof | SIAM journal on scientific computing, 1995-09, Vol.16 (5), p.1190-1208 |
issn | 1064-8275 1095-7197 |
language | eng |
recordid | cdi_proquest_journals_921565075 |
source | SIAM Journals Online |
subjects | Algorithms Applied sciences Approximation Calculus of variations and optimal control Computer science Exact sciences and technology Grants Mathematical analysis Mathematics Operational research and scientific management Operational research. Management science Optimization Optimization. Search problems Sciences and techniques of general use |
title | A limited memory algorithm for bound constrained optimization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T14%3A39%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20limited%20memory%20algorithm%20for%20bound%20constrained%20optimization&rft.jtitle=SIAM%20journal%20on%20scientific%20computing&rft.au=BYRD,%20R.%20H&rft.date=1995-09-01&rft.volume=16&rft.issue=5&rft.spage=1190&rft.epage=1208&rft.pages=1190-1208&rft.issn=1064-8275&rft.eissn=1095-7197&rft.coden=SJOCE3&rft_id=info:doi/10.1137/0916069&rft_dat=%3Cproquest_cross%3E2587159921%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=921565075&rft_id=info:pmid/&rfr_iscdi=true |