ODE recursions and iterative solvers for linear equations

Timestepping to a steady-state solution is increasingly applied in engineering and scientific applications as a means for solving equilibrium problems. In the present work we examine the relation between the recursion in timestepping algorithms for semidiscrete systems of ODEs and certain types of i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM Journal on Scientific Computing 1996, Vol.17 (1), p.65-77
Hauptverfasser: LORBER, A. A, CAREY, G. F, JOUBERT, W. D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 77
container_issue 1
container_start_page 65
container_title SIAM Journal on Scientific Computing
container_volume 17
creator LORBER, A. A
CAREY, G. F
JOUBERT, W. D
description Timestepping to a steady-state solution is increasingly applied in engineering and scientific applications as a means for solving equilibrium problems. In the present work we examine the relation between the recursion in timestepping algorithms for semidiscrete systems of ODEs and certain types of iterative methods for solving discretized systems of equilibrium PDEs. We consider, in particular, the possibility of accelerating the ODE approach using recursions that are not time accurate together with parameter selection based on the theory of iterative methods. As one example, we take the parameters arising from the Chebyshev-type iterative methods and use them in a two-stage Runge-Kutta scheme. A comparison study for a representative steady-state diffusion problem indicates a dramatic improvement in convergence and efficiency. We remark that this approach can be trivially incorporated into existing time-integration codes to significant advantage. This yields a hybrid adaptive approach in a single code.
doi_str_mv 10.1137/0917006
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_journals_921555810</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2587109721</sourcerecordid><originalsourceid>FETCH-LOGICAL-c305t-6da38efb80b93b9bbce0442e763d9180c3b21f6a8d17ff7467293d8cf889659d3</originalsourceid><addsrcrecordid>eNo90E1LAzEQBuAgCtYq_oVVBE-rk2TzdRStH1DoRc8hm00wZU3aZLfgv3dLi6cZmIeX4UXoGsMDxlQ8gsICgJ-gGQbFaoGVON3vvKklEewcXZSyBsC8UWSG1OplUWVnx1xCiqUysavC4LIZws5VJfU7l0vlU676EJ3JlduO022il-jMm764q-Oco6_Xxefze71cvX08Py1rS4ENNe8Mlc63ElpFW9W21kHTECc47RSWYGlLsOdGdlh4LxouiKKdtF5KxZnq6BzdHHJTGYIudvrOftsUo7ODJlgyQiZzezCbnLajK4NepzHH6S2tCGaMSQwTuj8gm1Mp2Xm9yeHH5F-NQe-r08fqJnl3jDPFmt5nE20o_5wCBSEo_QM662sk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>921555810</pqid></control><display><type>article</type><title>ODE recursions and iterative solvers for linear equations</title><source>SIAM Journals Online</source><creator>LORBER, A. A ; CAREY, G. F ; JOUBERT, W. D</creator><creatorcontrib>LORBER, A. A ; CAREY, G. F ; JOUBERT, W. D</creatorcontrib><description>Timestepping to a steady-state solution is increasingly applied in engineering and scientific applications as a means for solving equilibrium problems. In the present work we examine the relation between the recursion in timestepping algorithms for semidiscrete systems of ODEs and certain types of iterative methods for solving discretized systems of equilibrium PDEs. We consider, in particular, the possibility of accelerating the ODE approach using recursions that are not time accurate together with parameter selection based on the theory of iterative methods. As one example, we take the parameters arising from the Chebyshev-type iterative methods and use them in a two-stage Runge-Kutta scheme. A comparison study for a representative steady-state diffusion problem indicates a dramatic improvement in convergence and efficiency. We remark that this approach can be trivially incorporated into existing time-integration codes to significant advantage. This yields a hybrid adaptive approach in a single code.</description><identifier>ISSN: 1064-8275</identifier><identifier>EISSN: 1095-7197</identifier><identifier>DOI: 10.1137/0917006</identifier><identifier>CODEN: SJOCE3</identifier><language>eng</language><publisher>Philadelphia, PA: Society for Industrial and Applied Mathematics</publisher><subject>Algorithms ; Approximation ; DIFFERENTIAL EQUATIONS ; Exact sciences and technology ; HYBRID SYSTEMS ; ITERATIVE METHODS ; Laboratories ; Linear equations ; Mathematics ; MATHEMATICS, COMPUTERS, INFORMATION SCIENCE, MANAGEMENT, LAW, MISCELLANEOUS ; Numerical analysis ; Numerical analysis. Scientific computation ; Ordinary differential equations ; PARTIAL DIFFERENTIAL EQUATIONS ; RECURSION RELATIONS ; RUNGE-KUTTA METHOD ; Sciences and techniques of general use</subject><ispartof>SIAM Journal on Scientific Computing, 1996, Vol.17 (1), p.65-77</ispartof><rights>1996 INIST-CNRS</rights><rights>[Copyright] © 1996 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c305t-6da38efb80b93b9bbce0442e763d9180c3b21f6a8d17ff7467293d8cf889659d3</citedby><cites>FETCH-LOGICAL-c305t-6da38efb80b93b9bbce0442e763d9180c3b21f6a8d17ff7467293d8cf889659d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,885,3184,4050,4051,23930,23931,25140,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3030773$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/218522$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>LORBER, A. A</creatorcontrib><creatorcontrib>CAREY, G. F</creatorcontrib><creatorcontrib>JOUBERT, W. D</creatorcontrib><title>ODE recursions and iterative solvers for linear equations</title><title>SIAM Journal on Scientific Computing</title><description>Timestepping to a steady-state solution is increasingly applied in engineering and scientific applications as a means for solving equilibrium problems. In the present work we examine the relation between the recursion in timestepping algorithms for semidiscrete systems of ODEs and certain types of iterative methods for solving discretized systems of equilibrium PDEs. We consider, in particular, the possibility of accelerating the ODE approach using recursions that are not time accurate together with parameter selection based on the theory of iterative methods. As one example, we take the parameters arising from the Chebyshev-type iterative methods and use them in a two-stage Runge-Kutta scheme. A comparison study for a representative steady-state diffusion problem indicates a dramatic improvement in convergence and efficiency. We remark that this approach can be trivially incorporated into existing time-integration codes to significant advantage. This yields a hybrid adaptive approach in a single code.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>DIFFERENTIAL EQUATIONS</subject><subject>Exact sciences and technology</subject><subject>HYBRID SYSTEMS</subject><subject>ITERATIVE METHODS</subject><subject>Laboratories</subject><subject>Linear equations</subject><subject>Mathematics</subject><subject>MATHEMATICS, COMPUTERS, INFORMATION SCIENCE, MANAGEMENT, LAW, MISCELLANEOUS</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Ordinary differential equations</subject><subject>PARTIAL DIFFERENTIAL EQUATIONS</subject><subject>RECURSION RELATIONS</subject><subject>RUNGE-KUTTA METHOD</subject><subject>Sciences and techniques of general use</subject><issn>1064-8275</issn><issn>1095-7197</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNo90E1LAzEQBuAgCtYq_oVVBE-rk2TzdRStH1DoRc8hm00wZU3aZLfgv3dLi6cZmIeX4UXoGsMDxlQ8gsICgJ-gGQbFaoGVON3vvKklEewcXZSyBsC8UWSG1OplUWVnx1xCiqUysavC4LIZws5VJfU7l0vlU676EJ3JlduO022il-jMm764q-Oco6_Xxefze71cvX08Py1rS4ENNe8Mlc63ElpFW9W21kHTECc47RSWYGlLsOdGdlh4LxouiKKdtF5KxZnq6BzdHHJTGYIudvrOftsUo7ODJlgyQiZzezCbnLajK4NepzHH6S2tCGaMSQwTuj8gm1Mp2Xm9yeHH5F-NQe-r08fqJnl3jDPFmt5nE20o_5wCBSEo_QM662sk</recordid><startdate>1996</startdate><enddate>1996</enddate><creator>LORBER, A. A</creator><creator>CAREY, G. F</creator><creator>JOUBERT, W. D</creator><general>Society for Industrial and Applied Mathematics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>OTOTI</scope></search><sort><creationdate>1996</creationdate><title>ODE recursions and iterative solvers for linear equations</title><author>LORBER, A. A ; CAREY, G. F ; JOUBERT, W. D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c305t-6da38efb80b93b9bbce0442e763d9180c3b21f6a8d17ff7467293d8cf889659d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>DIFFERENTIAL EQUATIONS</topic><topic>Exact sciences and technology</topic><topic>HYBRID SYSTEMS</topic><topic>ITERATIVE METHODS</topic><topic>Laboratories</topic><topic>Linear equations</topic><topic>Mathematics</topic><topic>MATHEMATICS, COMPUTERS, INFORMATION SCIENCE, MANAGEMENT, LAW, MISCELLANEOUS</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Ordinary differential equations</topic><topic>PARTIAL DIFFERENTIAL EQUATIONS</topic><topic>RECURSION RELATIONS</topic><topic>RUNGE-KUTTA METHOD</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>LORBER, A. A</creatorcontrib><creatorcontrib>CAREY, G. F</creatorcontrib><creatorcontrib>JOUBERT, W. D</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>OSTI.GOV</collection><jtitle>SIAM Journal on Scientific Computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>LORBER, A. A</au><au>CAREY, G. F</au><au>JOUBERT, W. D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ODE recursions and iterative solvers for linear equations</atitle><jtitle>SIAM Journal on Scientific Computing</jtitle><date>1996</date><risdate>1996</risdate><volume>17</volume><issue>1</issue><spage>65</spage><epage>77</epage><pages>65-77</pages><issn>1064-8275</issn><eissn>1095-7197</eissn><coden>SJOCE3</coden><abstract>Timestepping to a steady-state solution is increasingly applied in engineering and scientific applications as a means for solving equilibrium problems. In the present work we examine the relation between the recursion in timestepping algorithms for semidiscrete systems of ODEs and certain types of iterative methods for solving discretized systems of equilibrium PDEs. We consider, in particular, the possibility of accelerating the ODE approach using recursions that are not time accurate together with parameter selection based on the theory of iterative methods. As one example, we take the parameters arising from the Chebyshev-type iterative methods and use them in a two-stage Runge-Kutta scheme. A comparison study for a representative steady-state diffusion problem indicates a dramatic improvement in convergence and efficiency. We remark that this approach can be trivially incorporated into existing time-integration codes to significant advantage. This yields a hybrid adaptive approach in a single code.</abstract><cop>Philadelphia, PA</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/0917006</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1064-8275
ispartof SIAM Journal on Scientific Computing, 1996, Vol.17 (1), p.65-77
issn 1064-8275
1095-7197
language eng
recordid cdi_proquest_journals_921555810
source SIAM Journals Online
subjects Algorithms
Approximation
DIFFERENTIAL EQUATIONS
Exact sciences and technology
HYBRID SYSTEMS
ITERATIVE METHODS
Laboratories
Linear equations
Mathematics
MATHEMATICS, COMPUTERS, INFORMATION SCIENCE, MANAGEMENT, LAW, MISCELLANEOUS
Numerical analysis
Numerical analysis. Scientific computation
Ordinary differential equations
PARTIAL DIFFERENTIAL EQUATIONS
RECURSION RELATIONS
RUNGE-KUTTA METHOD
Sciences and techniques of general use
title ODE recursions and iterative solvers for linear equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T06%3A50%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ODE%20recursions%20and%20iterative%20solvers%20for%20linear%20equations&rft.jtitle=SIAM%20Journal%20on%20Scientific%20Computing&rft.au=LORBER,%20A.%20A&rft.date=1996&rft.volume=17&rft.issue=1&rft.spage=65&rft.epage=77&rft.pages=65-77&rft.issn=1064-8275&rft.eissn=1095-7197&rft.coden=SJOCE3&rft_id=info:doi/10.1137/0917006&rft_dat=%3Cproquest_osti_%3E2587109721%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=921555810&rft_id=info:pmid/&rfr_iscdi=true