Solving the Maxwell equations by the Chebyshev method: a one-step finite-difference time-domain algorithm

We present a one-step algorithm that solves the Maxwell equations for systems with spatially varying permittivity and permeability by the Chebyshev method. We demonstrate that this algorithm may be orders of magnitude more efficient than current finite-difference time-domain (FDTD) algorithms.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on antennas and propagation 2003-11, Vol.51 (11), p.3155-3160
Hauptverfasser: De Raedt, H., Michielsen, K., Kole, J.S., Figge, M.T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3160
container_issue 11
container_start_page 3155
container_title IEEE transactions on antennas and propagation
container_volume 51
creator De Raedt, H.
Michielsen, K.
Kole, J.S.
Figge, M.T.
description We present a one-step algorithm that solves the Maxwell equations for systems with spatially varying permittivity and permeability by the Chebyshev method. We demonstrate that this algorithm may be orders of magnitude more efficient than current finite-difference time-domain (FDTD) algorithms.
doi_str_mv 10.1109/TAP.2003.818809
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_921509703</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1243513</ieee_id><sourcerecordid>907968148</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-ef8d15d25740471ab40de8950bc0d38a3ac7e1a31e5000052329eeea578933da3</originalsourceid><addsrcrecordid>eNp9kctLAzEQxoMoWB9nD16CBz1tm8emm3grxRdUFFTwFtLdWTdld9NustX-90YrCB6cyzDM7xvm40PohJIhpUSNniePQ0YIH0oqJVE7aECFkAljjO6iASFUJoqNX_fRgfeLOKYyTQfIPrl6bds3HCrA9-bjHeoaw6o3wbrW4_nmezGtYL7xFaxxA6FyxSU22LWQ-ABLXNrWBkgKW5bQQZsDDraJs2uMbbGp31xnQ9Ucob3S1B6Of_oherm-ep7eJrOHm7vpZJbkPFUhgVIWVBRMZClJM2rmKSlAKkHmOSm4NNzkGVDDKQgSSzDOFAAYkUnFeWH4IbrY3l12btWDD7qxPo-2TAuu91qRTI1ltB_J839JJuMTKmMRPPsDLlzftdGFVowKojLCIzTaQnnnvO-g1MvONqbbaEr0V0I6JqS_EtLbhKLidKuw0cAvzVIuKOefFBqMXg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>921509703</pqid></control><display><type>article</type><title>Solving the Maxwell equations by the Chebyshev method: a one-step finite-difference time-domain algorithm</title><source>IEEE Electronic Library (IEL)</source><creator>De Raedt, H. ; Michielsen, K. ; Kole, J.S. ; Figge, M.T.</creator><creatorcontrib>De Raedt, H. ; Michielsen, K. ; Kole, J.S. ; Figge, M.T.</creatorcontrib><description>We present a one-step algorithm that solves the Maxwell equations for systems with spatially varying permittivity and permeability by the Chebyshev method. We demonstrate that this algorithm may be orders of magnitude more efficient than current finite-difference time-domain (FDTD) algorithms.</description><identifier>ISSN: 0018-926X</identifier><identifier>EISSN: 1558-2221</identifier><identifier>DOI: 10.1109/TAP.2003.818809</identifier><identifier>CODEN: IETPAK</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Antennas ; Chebyshev approximation ; Dielectric constant ; Finite difference method ; Finite difference methods ; Mathematical analysis ; Maxwell equation ; Maxwell equations ; Numerical stability ; Permeability ; Permittivity ; Polynomials ; Proposals ; Time domain analysis ; Very large scale integration</subject><ispartof>IEEE transactions on antennas and propagation, 2003-11, Vol.51 (11), p.3155-3160</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-ef8d15d25740471ab40de8950bc0d38a3ac7e1a31e5000052329eeea578933da3</citedby><cites>FETCH-LOGICAL-c349t-ef8d15d25740471ab40de8950bc0d38a3ac7e1a31e5000052329eeea578933da3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1243513$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27911,27912,54745</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1243513$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>De Raedt, H.</creatorcontrib><creatorcontrib>Michielsen, K.</creatorcontrib><creatorcontrib>Kole, J.S.</creatorcontrib><creatorcontrib>Figge, M.T.</creatorcontrib><title>Solving the Maxwell equations by the Chebyshev method: a one-step finite-difference time-domain algorithm</title><title>IEEE transactions on antennas and propagation</title><addtitle>TAP</addtitle><description>We present a one-step algorithm that solves the Maxwell equations for systems with spatially varying permittivity and permeability by the Chebyshev method. We demonstrate that this algorithm may be orders of magnitude more efficient than current finite-difference time-domain (FDTD) algorithms.</description><subject>Algorithms</subject><subject>Antennas</subject><subject>Chebyshev approximation</subject><subject>Dielectric constant</subject><subject>Finite difference method</subject><subject>Finite difference methods</subject><subject>Mathematical analysis</subject><subject>Maxwell equation</subject><subject>Maxwell equations</subject><subject>Numerical stability</subject><subject>Permeability</subject><subject>Permittivity</subject><subject>Polynomials</subject><subject>Proposals</subject><subject>Time domain analysis</subject><subject>Very large scale integration</subject><issn>0018-926X</issn><issn>1558-2221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kctLAzEQxoMoWB9nD16CBz1tm8emm3grxRdUFFTwFtLdWTdld9NustX-90YrCB6cyzDM7xvm40PohJIhpUSNniePQ0YIH0oqJVE7aECFkAljjO6iASFUJoqNX_fRgfeLOKYyTQfIPrl6bds3HCrA9-bjHeoaw6o3wbrW4_nmezGtYL7xFaxxA6FyxSU22LWQ-ABLXNrWBkgKW5bQQZsDDraJs2uMbbGp31xnQ9Ucob3S1B6Of_oherm-ep7eJrOHm7vpZJbkPFUhgVIWVBRMZClJM2rmKSlAKkHmOSm4NNzkGVDDKQgSSzDOFAAYkUnFeWH4IbrY3l12btWDD7qxPo-2TAuu91qRTI1ltB_J839JJuMTKmMRPPsDLlzftdGFVowKojLCIzTaQnnnvO-g1MvONqbbaEr0V0I6JqS_EtLbhKLidKuw0cAvzVIuKOefFBqMXg</recordid><startdate>20031101</startdate><enddate>20031101</enddate><creator>De Raedt, H.</creator><creator>Michielsen, K.</creator><creator>Kole, J.S.</creator><creator>Figge, M.T.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20031101</creationdate><title>Solving the Maxwell equations by the Chebyshev method: a one-step finite-difference time-domain algorithm</title><author>De Raedt, H. ; Michielsen, K. ; Kole, J.S. ; Figge, M.T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-ef8d15d25740471ab40de8950bc0d38a3ac7e1a31e5000052329eeea578933da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Algorithms</topic><topic>Antennas</topic><topic>Chebyshev approximation</topic><topic>Dielectric constant</topic><topic>Finite difference method</topic><topic>Finite difference methods</topic><topic>Mathematical analysis</topic><topic>Maxwell equation</topic><topic>Maxwell equations</topic><topic>Numerical stability</topic><topic>Permeability</topic><topic>Permittivity</topic><topic>Polynomials</topic><topic>Proposals</topic><topic>Time domain analysis</topic><topic>Very large scale integration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>De Raedt, H.</creatorcontrib><creatorcontrib>Michielsen, K.</creatorcontrib><creatorcontrib>Kole, J.S.</creatorcontrib><creatorcontrib>Figge, M.T.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on antennas and propagation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>De Raedt, H.</au><au>Michielsen, K.</au><au>Kole, J.S.</au><au>Figge, M.T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solving the Maxwell equations by the Chebyshev method: a one-step finite-difference time-domain algorithm</atitle><jtitle>IEEE transactions on antennas and propagation</jtitle><stitle>TAP</stitle><date>2003-11-01</date><risdate>2003</risdate><volume>51</volume><issue>11</issue><spage>3155</spage><epage>3160</epage><pages>3155-3160</pages><issn>0018-926X</issn><eissn>1558-2221</eissn><coden>IETPAK</coden><abstract>We present a one-step algorithm that solves the Maxwell equations for systems with spatially varying permittivity and permeability by the Chebyshev method. We demonstrate that this algorithm may be orders of magnitude more efficient than current finite-difference time-domain (FDTD) algorithms.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAP.2003.818809</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-926X
ispartof IEEE transactions on antennas and propagation, 2003-11, Vol.51 (11), p.3155-3160
issn 0018-926X
1558-2221
language eng
recordid cdi_proquest_journals_921509703
source IEEE Electronic Library (IEL)
subjects Algorithms
Antennas
Chebyshev approximation
Dielectric constant
Finite difference method
Finite difference methods
Mathematical analysis
Maxwell equation
Maxwell equations
Numerical stability
Permeability
Permittivity
Polynomials
Proposals
Time domain analysis
Very large scale integration
title Solving the Maxwell equations by the Chebyshev method: a one-step finite-difference time-domain algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T11%3A14%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solving%20the%20Maxwell%20equations%20by%20the%20Chebyshev%20method:%20a%20one-step%20finite-difference%20time-domain%20algorithm&rft.jtitle=IEEE%20transactions%20on%20antennas%20and%20propagation&rft.au=De%20Raedt,%20H.&rft.date=2003-11-01&rft.volume=51&rft.issue=11&rft.spage=3155&rft.epage=3160&rft.pages=3155-3160&rft.issn=0018-926X&rft.eissn=1558-2221&rft.coden=IETPAK&rft_id=info:doi/10.1109/TAP.2003.818809&rft_dat=%3Cproquest_RIE%3E907968148%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=921509703&rft_id=info:pmid/&rft_ieee_id=1243513&rfr_iscdi=true