Solving the Maxwell equations by the Chebyshev method: a one-step finite-difference time-domain algorithm
We present a one-step algorithm that solves the Maxwell equations for systems with spatially varying permittivity and permeability by the Chebyshev method. We demonstrate that this algorithm may be orders of magnitude more efficient than current finite-difference time-domain (FDTD) algorithms.
Gespeichert in:
Veröffentlicht in: | IEEE transactions on antennas and propagation 2003-11, Vol.51 (11), p.3155-3160 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3160 |
---|---|
container_issue | 11 |
container_start_page | 3155 |
container_title | IEEE transactions on antennas and propagation |
container_volume | 51 |
creator | De Raedt, H. Michielsen, K. Kole, J.S. Figge, M.T. |
description | We present a one-step algorithm that solves the Maxwell equations for systems with spatially varying permittivity and permeability by the Chebyshev method. We demonstrate that this algorithm may be orders of magnitude more efficient than current finite-difference time-domain (FDTD) algorithms. |
doi_str_mv | 10.1109/TAP.2003.818809 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_921509703</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1243513</ieee_id><sourcerecordid>907968148</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-ef8d15d25740471ab40de8950bc0d38a3ac7e1a31e5000052329eeea578933da3</originalsourceid><addsrcrecordid>eNp9kctLAzEQxoMoWB9nD16CBz1tm8emm3grxRdUFFTwFtLdWTdld9NustX-90YrCB6cyzDM7xvm40PohJIhpUSNniePQ0YIH0oqJVE7aECFkAljjO6iASFUJoqNX_fRgfeLOKYyTQfIPrl6bds3HCrA9-bjHeoaw6o3wbrW4_nmezGtYL7xFaxxA6FyxSU22LWQ-ABLXNrWBkgKW5bQQZsDDraJs2uMbbGp31xnQ9Ucob3S1B6Of_oherm-ep7eJrOHm7vpZJbkPFUhgVIWVBRMZClJM2rmKSlAKkHmOSm4NNzkGVDDKQgSSzDOFAAYkUnFeWH4IbrY3l12btWDD7qxPo-2TAuu91qRTI1ltB_J839JJuMTKmMRPPsDLlzftdGFVowKojLCIzTaQnnnvO-g1MvONqbbaEr0V0I6JqS_EtLbhKLidKuw0cAvzVIuKOefFBqMXg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>921509703</pqid></control><display><type>article</type><title>Solving the Maxwell equations by the Chebyshev method: a one-step finite-difference time-domain algorithm</title><source>IEEE Electronic Library (IEL)</source><creator>De Raedt, H. ; Michielsen, K. ; Kole, J.S. ; Figge, M.T.</creator><creatorcontrib>De Raedt, H. ; Michielsen, K. ; Kole, J.S. ; Figge, M.T.</creatorcontrib><description>We present a one-step algorithm that solves the Maxwell equations for systems with spatially varying permittivity and permeability by the Chebyshev method. We demonstrate that this algorithm may be orders of magnitude more efficient than current finite-difference time-domain (FDTD) algorithms.</description><identifier>ISSN: 0018-926X</identifier><identifier>EISSN: 1558-2221</identifier><identifier>DOI: 10.1109/TAP.2003.818809</identifier><identifier>CODEN: IETPAK</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Antennas ; Chebyshev approximation ; Dielectric constant ; Finite difference method ; Finite difference methods ; Mathematical analysis ; Maxwell equation ; Maxwell equations ; Numerical stability ; Permeability ; Permittivity ; Polynomials ; Proposals ; Time domain analysis ; Very large scale integration</subject><ispartof>IEEE transactions on antennas and propagation, 2003-11, Vol.51 (11), p.3155-3160</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-ef8d15d25740471ab40de8950bc0d38a3ac7e1a31e5000052329eeea578933da3</citedby><cites>FETCH-LOGICAL-c349t-ef8d15d25740471ab40de8950bc0d38a3ac7e1a31e5000052329eeea578933da3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1243513$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27911,27912,54745</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1243513$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>De Raedt, H.</creatorcontrib><creatorcontrib>Michielsen, K.</creatorcontrib><creatorcontrib>Kole, J.S.</creatorcontrib><creatorcontrib>Figge, M.T.</creatorcontrib><title>Solving the Maxwell equations by the Chebyshev method: a one-step finite-difference time-domain algorithm</title><title>IEEE transactions on antennas and propagation</title><addtitle>TAP</addtitle><description>We present a one-step algorithm that solves the Maxwell equations for systems with spatially varying permittivity and permeability by the Chebyshev method. We demonstrate that this algorithm may be orders of magnitude more efficient than current finite-difference time-domain (FDTD) algorithms.</description><subject>Algorithms</subject><subject>Antennas</subject><subject>Chebyshev approximation</subject><subject>Dielectric constant</subject><subject>Finite difference method</subject><subject>Finite difference methods</subject><subject>Mathematical analysis</subject><subject>Maxwell equation</subject><subject>Maxwell equations</subject><subject>Numerical stability</subject><subject>Permeability</subject><subject>Permittivity</subject><subject>Polynomials</subject><subject>Proposals</subject><subject>Time domain analysis</subject><subject>Very large scale integration</subject><issn>0018-926X</issn><issn>1558-2221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kctLAzEQxoMoWB9nD16CBz1tm8emm3grxRdUFFTwFtLdWTdld9NustX-90YrCB6cyzDM7xvm40PohJIhpUSNniePQ0YIH0oqJVE7aECFkAljjO6iASFUJoqNX_fRgfeLOKYyTQfIPrl6bds3HCrA9-bjHeoaw6o3wbrW4_nmezGtYL7xFaxxA6FyxSU22LWQ-ABLXNrWBkgKW5bQQZsDDraJs2uMbbGp31xnQ9Ucob3S1B6Of_oherm-ep7eJrOHm7vpZJbkPFUhgVIWVBRMZClJM2rmKSlAKkHmOSm4NNzkGVDDKQgSSzDOFAAYkUnFeWH4IbrY3l12btWDD7qxPo-2TAuu91qRTI1ltB_J839JJuMTKmMRPPsDLlzftdGFVowKojLCIzTaQnnnvO-g1MvONqbbaEr0V0I6JqS_EtLbhKLidKuw0cAvzVIuKOefFBqMXg</recordid><startdate>20031101</startdate><enddate>20031101</enddate><creator>De Raedt, H.</creator><creator>Michielsen, K.</creator><creator>Kole, J.S.</creator><creator>Figge, M.T.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20031101</creationdate><title>Solving the Maxwell equations by the Chebyshev method: a one-step finite-difference time-domain algorithm</title><author>De Raedt, H. ; Michielsen, K. ; Kole, J.S. ; Figge, M.T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-ef8d15d25740471ab40de8950bc0d38a3ac7e1a31e5000052329eeea578933da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Algorithms</topic><topic>Antennas</topic><topic>Chebyshev approximation</topic><topic>Dielectric constant</topic><topic>Finite difference method</topic><topic>Finite difference methods</topic><topic>Mathematical analysis</topic><topic>Maxwell equation</topic><topic>Maxwell equations</topic><topic>Numerical stability</topic><topic>Permeability</topic><topic>Permittivity</topic><topic>Polynomials</topic><topic>Proposals</topic><topic>Time domain analysis</topic><topic>Very large scale integration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>De Raedt, H.</creatorcontrib><creatorcontrib>Michielsen, K.</creatorcontrib><creatorcontrib>Kole, J.S.</creatorcontrib><creatorcontrib>Figge, M.T.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on antennas and propagation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>De Raedt, H.</au><au>Michielsen, K.</au><au>Kole, J.S.</au><au>Figge, M.T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solving the Maxwell equations by the Chebyshev method: a one-step finite-difference time-domain algorithm</atitle><jtitle>IEEE transactions on antennas and propagation</jtitle><stitle>TAP</stitle><date>2003-11-01</date><risdate>2003</risdate><volume>51</volume><issue>11</issue><spage>3155</spage><epage>3160</epage><pages>3155-3160</pages><issn>0018-926X</issn><eissn>1558-2221</eissn><coden>IETPAK</coden><abstract>We present a one-step algorithm that solves the Maxwell equations for systems with spatially varying permittivity and permeability by the Chebyshev method. We demonstrate that this algorithm may be orders of magnitude more efficient than current finite-difference time-domain (FDTD) algorithms.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAP.2003.818809</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-926X |
ispartof | IEEE transactions on antennas and propagation, 2003-11, Vol.51 (11), p.3155-3160 |
issn | 0018-926X 1558-2221 |
language | eng |
recordid | cdi_proquest_journals_921509703 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Antennas Chebyshev approximation Dielectric constant Finite difference method Finite difference methods Mathematical analysis Maxwell equation Maxwell equations Numerical stability Permeability Permittivity Polynomials Proposals Time domain analysis Very large scale integration |
title | Solving the Maxwell equations by the Chebyshev method: a one-step finite-difference time-domain algorithm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T11%3A14%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solving%20the%20Maxwell%20equations%20by%20the%20Chebyshev%20method:%20a%20one-step%20finite-difference%20time-domain%20algorithm&rft.jtitle=IEEE%20transactions%20on%20antennas%20and%20propagation&rft.au=De%20Raedt,%20H.&rft.date=2003-11-01&rft.volume=51&rft.issue=11&rft.spage=3155&rft.epage=3160&rft.pages=3155-3160&rft.issn=0018-926X&rft.eissn=1558-2221&rft.coden=IETPAK&rft_id=info:doi/10.1109/TAP.2003.818809&rft_dat=%3Cproquest_RIE%3E907968148%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=921509703&rft_id=info:pmid/&rft_ieee_id=1243513&rfr_iscdi=true |