Radiation characteristics and performance of millimeter-wave horn-fed Gaussian beam antennas

Radiation characteristics and performance of Gaussian beam antennas (GBAs) are studied theoretically and experimentally in the 60 GHz band. A GBA consists of a plano-convex half-wavelength Fabry-Perot (FP) resonator excited by a guided source with a metal flange. Two reflecting metal mesh mirrors ar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on antennas and propagation 2003-03, Vol.51 (3), p.378-387
Hauptverfasser: Sauleau, R., Coquet, P., Thouroude, D., Daniel, J.-P., Matsui, T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 387
container_issue 3
container_start_page 378
container_title IEEE transactions on antennas and propagation
container_volume 51
creator Sauleau, R.
Coquet, P.
Thouroude, D.
Daniel, J.-P.
Matsui, T.
description Radiation characteristics and performance of Gaussian beam antennas (GBAs) are studied theoretically and experimentally in the 60 GHz band. A GBA consists of a plano-convex half-wavelength Fabry-Perot (FP) resonator excited by a guided source with a metal flange. Two reflecting metal mesh mirrors are formed on both faces of the cavity. After a review of the principles and quasi-optical performance of plano-convex FP resonators illuminated by a plane wave, a new formulation is proposed to compute the radiation patterns of GBAs: the usual expression of the waist radius inside open resonators is modified to account for the horn aperture and for the grid parameters of the plane mirror. Standard closed-form relations of vector Gaussian beams are then used to compute the radiated copolar components. In particular, it is shown that the plane mirror is not an equiphase surface, due to the metal flange of the horn. The true phase distribution is approximated by a spherical wavefront. As a result, the directivity of the antenna becomes lower than its quasi-optical value. Experimental data obtained at 60 GHz with several pyramidal horns and various cavities agree very well with the theory. Sidelobes are lower than -25 dB, and the cross-polarization level is the same as that of the primary radiator. Universal curves showing the variations of resonant frequency, -3 dB bandwidth, gain, and radiation efficiency as a function of mirror reflectivity are very useful for the design of GBAs.
doi_str_mv 10.1109/TAP.2003.809821
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_921506038</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1201311</ieee_id><sourcerecordid>27932689</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-db8593b1d363a06f80234fa7bb948b4004f7dae0d07c07abe3eeec272d24fa033</originalsourceid><addsrcrecordid>eNqF0c9LHDEUB_BQFLquPffQy-DBnmZ9-bGT5CjSqiBUxEIPhfAm8wYjM5k1ma343zfLFgoe9BQCn2_Ie1_GPnNYcQ727P78diUA5MqANYJ_YAu-XptaCMEP2AKAm9qK5tdHdpTzY7kqo9SC_b7DLuAcplj5B0zoZ0ohz8HnCmNXbSj1UxoxeqqmvhrDMISRiqmf8Q9VD1OKdU9ddYnbnAPGqiUcS3KmGDEfs8Meh0yf_p1L9vP7t_uLq_rmx-X1xflN7aWBue5as7ay5Z1sJELTGxBS9ajb1irTKgDV6w4JOtAeNLYkicgLLTpRGEi5ZF_3727S9LSlPLsxZE_DgJGmbXYWtFWN1qrI0zelKD8pO7TvQ22laMwOnryCj9M2xTKus4KvoQFpCjrbI5-mnBP1bpPCiOnFcXC79lxpz-3ac_v2SuLLPhHKrP-1AC45l38BqUWV_g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>921506038</pqid></control><display><type>article</type><title>Radiation characteristics and performance of millimeter-wave horn-fed Gaussian beam antennas</title><source>IEEE Electronic Library (IEL)</source><creator>Sauleau, R. ; Coquet, P. ; Thouroude, D. ; Daniel, J.-P. ; Matsui, T.</creator><creatorcontrib>Sauleau, R. ; Coquet, P. ; Thouroude, D. ; Daniel, J.-P. ; Matsui, T.</creatorcontrib><description>Radiation characteristics and performance of Gaussian beam antennas (GBAs) are studied theoretically and experimentally in the 60 GHz band. A GBA consists of a plano-convex half-wavelength Fabry-Perot (FP) resonator excited by a guided source with a metal flange. Two reflecting metal mesh mirrors are formed on both faces of the cavity. After a review of the principles and quasi-optical performance of plano-convex FP resonators illuminated by a plane wave, a new formulation is proposed to compute the radiation patterns of GBAs: the usual expression of the waist radius inside open resonators is modified to account for the horn aperture and for the grid parameters of the plane mirror. Standard closed-form relations of vector Gaussian beams are then used to compute the radiated copolar components. In particular, it is shown that the plane mirror is not an equiphase surface, due to the metal flange of the horn. The true phase distribution is approximated by a spherical wavefront. As a result, the directivity of the antenna becomes lower than its quasi-optical value. Experimental data obtained at 60 GHz with several pyramidal horns and various cavities agree very well with the theory. Sidelobes are lower than -25 dB, and the cross-polarization level is the same as that of the primary radiator. Universal curves showing the variations of resonant frequency, -3 dB bandwidth, gain, and radiation efficiency as a function of mirror reflectivity are very useful for the design of GBAs.</description><identifier>ISSN: 0018-926X</identifier><identifier>EISSN: 1558-2221</identifier><identifier>DOI: 10.1109/TAP.2003.809821</identifier><identifier>CODEN: IETPAK</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Antenna radiation patterns ; Antennas ; Apertures ; Bandwidth ; Directional antennas ; Fabry-Perot ; Filled plastics ; Flanges ; Gain ; Gaussian beams (optics) ; Grid computing ; Horns ; Mathematical analysis ; Mirrors ; Noise levels ; Resonant frequency ; Resonators</subject><ispartof>IEEE transactions on antennas and propagation, 2003-03, Vol.51 (3), p.378-387</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-db8593b1d363a06f80234fa7bb948b4004f7dae0d07c07abe3eeec272d24fa033</citedby><cites>FETCH-LOGICAL-c380t-db8593b1d363a06f80234fa7bb948b4004f7dae0d07c07abe3eeec272d24fa033</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1201311$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1201311$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sauleau, R.</creatorcontrib><creatorcontrib>Coquet, P.</creatorcontrib><creatorcontrib>Thouroude, D.</creatorcontrib><creatorcontrib>Daniel, J.-P.</creatorcontrib><creatorcontrib>Matsui, T.</creatorcontrib><title>Radiation characteristics and performance of millimeter-wave horn-fed Gaussian beam antennas</title><title>IEEE transactions on antennas and propagation</title><addtitle>TAP</addtitle><description>Radiation characteristics and performance of Gaussian beam antennas (GBAs) are studied theoretically and experimentally in the 60 GHz band. A GBA consists of a plano-convex half-wavelength Fabry-Perot (FP) resonator excited by a guided source with a metal flange. Two reflecting metal mesh mirrors are formed on both faces of the cavity. After a review of the principles and quasi-optical performance of plano-convex FP resonators illuminated by a plane wave, a new formulation is proposed to compute the radiation patterns of GBAs: the usual expression of the waist radius inside open resonators is modified to account for the horn aperture and for the grid parameters of the plane mirror. Standard closed-form relations of vector Gaussian beams are then used to compute the radiated copolar components. In particular, it is shown that the plane mirror is not an equiphase surface, due to the metal flange of the horn. The true phase distribution is approximated by a spherical wavefront. As a result, the directivity of the antenna becomes lower than its quasi-optical value. Experimental data obtained at 60 GHz with several pyramidal horns and various cavities agree very well with the theory. Sidelobes are lower than -25 dB, and the cross-polarization level is the same as that of the primary radiator. Universal curves showing the variations of resonant frequency, -3 dB bandwidth, gain, and radiation efficiency as a function of mirror reflectivity are very useful for the design of GBAs.</description><subject>Antenna radiation patterns</subject><subject>Antennas</subject><subject>Apertures</subject><subject>Bandwidth</subject><subject>Directional antennas</subject><subject>Fabry-Perot</subject><subject>Filled plastics</subject><subject>Flanges</subject><subject>Gain</subject><subject>Gaussian beams (optics)</subject><subject>Grid computing</subject><subject>Horns</subject><subject>Mathematical analysis</subject><subject>Mirrors</subject><subject>Noise levels</subject><subject>Resonant frequency</subject><subject>Resonators</subject><issn>0018-926X</issn><issn>1558-2221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqF0c9LHDEUB_BQFLquPffQy-DBnmZ9-bGT5CjSqiBUxEIPhfAm8wYjM5k1ma343zfLFgoe9BQCn2_Ie1_GPnNYcQ727P78diUA5MqANYJ_YAu-XptaCMEP2AKAm9qK5tdHdpTzY7kqo9SC_b7DLuAcplj5B0zoZ0ohz8HnCmNXbSj1UxoxeqqmvhrDMISRiqmf8Q9VD1OKdU9ddYnbnAPGqiUcS3KmGDEfs8Meh0yf_p1L9vP7t_uLq_rmx-X1xflN7aWBue5as7ay5Z1sJELTGxBS9ajb1irTKgDV6w4JOtAeNLYkicgLLTpRGEi5ZF_3727S9LSlPLsxZE_DgJGmbXYWtFWN1qrI0zelKD8pO7TvQ22laMwOnryCj9M2xTKus4KvoQFpCjrbI5-mnBP1bpPCiOnFcXC79lxpz-3ac_v2SuLLPhHKrP-1AC45l38BqUWV_g</recordid><startdate>20030301</startdate><enddate>20030301</enddate><creator>Sauleau, R.</creator><creator>Coquet, P.</creator><creator>Thouroude, D.</creator><creator>Daniel, J.-P.</creator><creator>Matsui, T.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>H8D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20030301</creationdate><title>Radiation characteristics and performance of millimeter-wave horn-fed Gaussian beam antennas</title><author>Sauleau, R. ; Coquet, P. ; Thouroude, D. ; Daniel, J.-P. ; Matsui, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-db8593b1d363a06f80234fa7bb948b4004f7dae0d07c07abe3eeec272d24fa033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Antenna radiation patterns</topic><topic>Antennas</topic><topic>Apertures</topic><topic>Bandwidth</topic><topic>Directional antennas</topic><topic>Fabry-Perot</topic><topic>Filled plastics</topic><topic>Flanges</topic><topic>Gain</topic><topic>Gaussian beams (optics)</topic><topic>Grid computing</topic><topic>Horns</topic><topic>Mathematical analysis</topic><topic>Mirrors</topic><topic>Noise levels</topic><topic>Resonant frequency</topic><topic>Resonators</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sauleau, R.</creatorcontrib><creatorcontrib>Coquet, P.</creatorcontrib><creatorcontrib>Thouroude, D.</creatorcontrib><creatorcontrib>Daniel, J.-P.</creatorcontrib><creatorcontrib>Matsui, T.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Aerospace Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on antennas and propagation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sauleau, R.</au><au>Coquet, P.</au><au>Thouroude, D.</au><au>Daniel, J.-P.</au><au>Matsui, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Radiation characteristics and performance of millimeter-wave horn-fed Gaussian beam antennas</atitle><jtitle>IEEE transactions on antennas and propagation</jtitle><stitle>TAP</stitle><date>2003-03-01</date><risdate>2003</risdate><volume>51</volume><issue>3</issue><spage>378</spage><epage>387</epage><pages>378-387</pages><issn>0018-926X</issn><eissn>1558-2221</eissn><coden>IETPAK</coden><abstract>Radiation characteristics and performance of Gaussian beam antennas (GBAs) are studied theoretically and experimentally in the 60 GHz band. A GBA consists of a plano-convex half-wavelength Fabry-Perot (FP) resonator excited by a guided source with a metal flange. Two reflecting metal mesh mirrors are formed on both faces of the cavity. After a review of the principles and quasi-optical performance of plano-convex FP resonators illuminated by a plane wave, a new formulation is proposed to compute the radiation patterns of GBAs: the usual expression of the waist radius inside open resonators is modified to account for the horn aperture and for the grid parameters of the plane mirror. Standard closed-form relations of vector Gaussian beams are then used to compute the radiated copolar components. In particular, it is shown that the plane mirror is not an equiphase surface, due to the metal flange of the horn. The true phase distribution is approximated by a spherical wavefront. As a result, the directivity of the antenna becomes lower than its quasi-optical value. Experimental data obtained at 60 GHz with several pyramidal horns and various cavities agree very well with the theory. Sidelobes are lower than -25 dB, and the cross-polarization level is the same as that of the primary radiator. Universal curves showing the variations of resonant frequency, -3 dB bandwidth, gain, and radiation efficiency as a function of mirror reflectivity are very useful for the design of GBAs.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAP.2003.809821</doi><tpages>10</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-926X
ispartof IEEE transactions on antennas and propagation, 2003-03, Vol.51 (3), p.378-387
issn 0018-926X
1558-2221
language eng
recordid cdi_proquest_journals_921506038
source IEEE Electronic Library (IEL)
subjects Antenna radiation patterns
Antennas
Apertures
Bandwidth
Directional antennas
Fabry-Perot
Filled plastics
Flanges
Gain
Gaussian beams (optics)
Grid computing
Horns
Mathematical analysis
Mirrors
Noise levels
Resonant frequency
Resonators
title Radiation characteristics and performance of millimeter-wave horn-fed Gaussian beam antennas
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T15%3A17%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Radiation%20characteristics%20and%20performance%20of%20millimeter-wave%20horn-fed%20Gaussian%20beam%20antennas&rft.jtitle=IEEE%20transactions%20on%20antennas%20and%20propagation&rft.au=Sauleau,%20R.&rft.date=2003-03-01&rft.volume=51&rft.issue=3&rft.spage=378&rft.epage=387&rft.pages=378-387&rft.issn=0018-926X&rft.eissn=1558-2221&rft.coden=IETPAK&rft_id=info:doi/10.1109/TAP.2003.809821&rft_dat=%3Cproquest_RIE%3E27932689%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=921506038&rft_id=info:pmid/&rft_ieee_id=1201311&rfr_iscdi=true