Statistical condition estimation for linear systems

The standard approach to measuring the condition of a linear system compresses all sensitivity information into one number. Thus a loss of information can occur in situations in which the standard condition number with respect to inversion does not accurately reflect the actual sensitivity of a solu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on scientific computing 1998-03, Vol.19 (2), p.566-583
Hauptverfasser: KENNEY, C. S, LAUB, A. J, REESE, M. S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 583
container_issue 2
container_start_page 566
container_title SIAM journal on scientific computing
container_volume 19
creator KENNEY, C. S
LAUB, A. J
REESE, M. S
description The standard approach to measuring the condition of a linear system compresses all sensitivity information into one number. Thus a loss of information can occur in situations in which the standard condition number with respect to inversion does not accurately reflect the actual sensitivity of a solution or particular entries of a solution. It is shown that a new method for estimating the sensitivity of linear systems addresses these difficulties. The new procedure measures the effects on the solution of small random changes in the input data and, by properly scaling the results, obtains reliable condition estimates for each entry of the computed solution. Moreover, this approach, which is referred to as small-sample statistical condition estimation, is no more costly than the standard 1-norm or power method 2-norm condition estimates, and it has the advantage of considerable flexibility. For example, it easily accommodates restrictions on, or structure associated with, allowable perturbations. The method also has a rigorous statistical theory available for the probability of accuracy of the condition estimates. However, it gives no estimate of an approximate null vector for nearly singular systems. The theory of this approach is discussed along with several illustrative examples.
doi_str_mv 10.1137/S1064827595282519
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_921471842</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2586718431</sourcerecordid><originalsourceid>FETCH-LOGICAL-c299t-f071a2b9301edbe1dd8f541895618d8f2d85801b05424badc0a8fc910c821c273</originalsourceid><addsrcrecordid>eNplUE1LAzEQDaJgrf4Ab4t4Xc3kY5McpfgFBQ_Vc8jmA1K2uzVJD_33prbgwdM8Zt57M_MQugX8AEDF4wpwxyQRXHEiCQd1hmaAFW8FKHF-wB1rD_NLdJXzGmPomCIzRFfFlJhLtGZo7DS6WOI0Nr52NuYXhik1Qxy9SU3e5-I3-RpdBDNkf3Oqc_T18vy5eGuXH6_vi6dla4lSpQ1YgCG9ohi86z04JwNnIBXvQFZMnOQSQ485I6w3zmIjg1WArSRgiaBzdHf03abpe1dP0utpl8a6UisCTIBkpJLgSLJpyjn5oLepnp72GrA-RKP_RVM19ydjk-vfIZnRxvwnFFIB5fQHGQ9iNA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>921471842</pqid></control><display><type>article</type><title>Statistical condition estimation for linear systems</title><source>SIAM Journals Online</source><creator>KENNEY, C. S ; LAUB, A. J ; REESE, M. S</creator><creatorcontrib>KENNEY, C. S ; LAUB, A. J ; REESE, M. S</creatorcontrib><description>The standard approach to measuring the condition of a linear system compresses all sensitivity information into one number. Thus a loss of information can occur in situations in which the standard condition number with respect to inversion does not accurately reflect the actual sensitivity of a solution or particular entries of a solution. It is shown that a new method for estimating the sensitivity of linear systems addresses these difficulties. The new procedure measures the effects on the solution of small random changes in the input data and, by properly scaling the results, obtains reliable condition estimates for each entry of the computed solution. Moreover, this approach, which is referred to as small-sample statistical condition estimation, is no more costly than the standard 1-norm or power method 2-norm condition estimates, and it has the advantage of considerable flexibility. For example, it easily accommodates restrictions on, or structure associated with, allowable perturbations. The method also has a rigorous statistical theory available for the probability of accuracy of the condition estimates. However, it gives no estimate of an approximate null vector for nearly singular systems. The theory of this approach is discussed along with several illustrative examples.</description><identifier>ISSN: 1064-8275</identifier><identifier>EISSN: 1095-7197</identifier><identifier>DOI: 10.1137/S1064827595282519</identifier><identifier>CODEN: SJOCE3</identifier><language>eng</language><publisher>Philadelphia, PA: Society for Industrial and Applied Mathematics</publisher><subject>Accuracy ; Algebra ; Estimates ; Exact sciences and technology ; Linear and multilinear algebra, matrix theory ; Mathematics ; Numerical analysis ; Numerical analysis. Scientific computation ; Numerical linear algebra ; Sciences and techniques of general use</subject><ispartof>SIAM journal on scientific computing, 1998-03, Vol.19 (2), p.566-583</ispartof><rights>1999 INIST-CNRS</rights><rights>[Copyright] © 1998 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c299t-f071a2b9301edbe1dd8f541895618d8f2d85801b05424badc0a8fc910c821c273</citedby><cites>FETCH-LOGICAL-c299t-f071a2b9301edbe1dd8f541895618d8f2d85801b05424badc0a8fc910c821c273</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3171,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1789135$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>KENNEY, C. S</creatorcontrib><creatorcontrib>LAUB, A. J</creatorcontrib><creatorcontrib>REESE, M. S</creatorcontrib><title>Statistical condition estimation for linear systems</title><title>SIAM journal on scientific computing</title><description>The standard approach to measuring the condition of a linear system compresses all sensitivity information into one number. Thus a loss of information can occur in situations in which the standard condition number with respect to inversion does not accurately reflect the actual sensitivity of a solution or particular entries of a solution. It is shown that a new method for estimating the sensitivity of linear systems addresses these difficulties. The new procedure measures the effects on the solution of small random changes in the input data and, by properly scaling the results, obtains reliable condition estimates for each entry of the computed solution. Moreover, this approach, which is referred to as small-sample statistical condition estimation, is no more costly than the standard 1-norm or power method 2-norm condition estimates, and it has the advantage of considerable flexibility. For example, it easily accommodates restrictions on, or structure associated with, allowable perturbations. The method also has a rigorous statistical theory available for the probability of accuracy of the condition estimates. However, it gives no estimate of an approximate null vector for nearly singular systems. The theory of this approach is discussed along with several illustrative examples.</description><subject>Accuracy</subject><subject>Algebra</subject><subject>Estimates</subject><subject>Exact sciences and technology</subject><subject>Linear and multilinear algebra, matrix theory</subject><subject>Mathematics</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Numerical linear algebra</subject><subject>Sciences and techniques of general use</subject><issn>1064-8275</issn><issn>1095-7197</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNplUE1LAzEQDaJgrf4Ab4t4Xc3kY5McpfgFBQ_Vc8jmA1K2uzVJD_33prbgwdM8Zt57M_MQugX8AEDF4wpwxyQRXHEiCQd1hmaAFW8FKHF-wB1rD_NLdJXzGmPomCIzRFfFlJhLtGZo7DS6WOI0Nr52NuYXhik1Qxy9SU3e5-I3-RpdBDNkf3Oqc_T18vy5eGuXH6_vi6dla4lSpQ1YgCG9ohi86z04JwNnIBXvQFZMnOQSQ485I6w3zmIjg1WArSRgiaBzdHf03abpe1dP0utpl8a6UisCTIBkpJLgSLJpyjn5oLepnp72GrA-RKP_RVM19ydjk-vfIZnRxvwnFFIB5fQHGQ9iNA</recordid><startdate>19980301</startdate><enddate>19980301</enddate><creator>KENNEY, C. S</creator><creator>LAUB, A. J</creator><creator>REESE, M. S</creator><general>Society for Industrial and Applied Mathematics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>19980301</creationdate><title>Statistical condition estimation for linear systems</title><author>KENNEY, C. S ; LAUB, A. J ; REESE, M. S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c299t-f071a2b9301edbe1dd8f541895618d8f2d85801b05424badc0a8fc910c821c273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Accuracy</topic><topic>Algebra</topic><topic>Estimates</topic><topic>Exact sciences and technology</topic><topic>Linear and multilinear algebra, matrix theory</topic><topic>Mathematics</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Numerical linear algebra</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>KENNEY, C. S</creatorcontrib><creatorcontrib>LAUB, A. J</creatorcontrib><creatorcontrib>REESE, M. S</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on scientific computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>KENNEY, C. S</au><au>LAUB, A. J</au><au>REESE, M. S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Statistical condition estimation for linear systems</atitle><jtitle>SIAM journal on scientific computing</jtitle><date>1998-03-01</date><risdate>1998</risdate><volume>19</volume><issue>2</issue><spage>566</spage><epage>583</epage><pages>566-583</pages><issn>1064-8275</issn><eissn>1095-7197</eissn><coden>SJOCE3</coden><abstract>The standard approach to measuring the condition of a linear system compresses all sensitivity information into one number. Thus a loss of information can occur in situations in which the standard condition number with respect to inversion does not accurately reflect the actual sensitivity of a solution or particular entries of a solution. It is shown that a new method for estimating the sensitivity of linear systems addresses these difficulties. The new procedure measures the effects on the solution of small random changes in the input data and, by properly scaling the results, obtains reliable condition estimates for each entry of the computed solution. Moreover, this approach, which is referred to as small-sample statistical condition estimation, is no more costly than the standard 1-norm or power method 2-norm condition estimates, and it has the advantage of considerable flexibility. For example, it easily accommodates restrictions on, or structure associated with, allowable perturbations. The method also has a rigorous statistical theory available for the probability of accuracy of the condition estimates. However, it gives no estimate of an approximate null vector for nearly singular systems. The theory of this approach is discussed along with several illustrative examples.</abstract><cop>Philadelphia, PA</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/S1064827595282519</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1064-8275
ispartof SIAM journal on scientific computing, 1998-03, Vol.19 (2), p.566-583
issn 1064-8275
1095-7197
language eng
recordid cdi_proquest_journals_921471842
source SIAM Journals Online
subjects Accuracy
Algebra
Estimates
Exact sciences and technology
Linear and multilinear algebra, matrix theory
Mathematics
Numerical analysis
Numerical analysis. Scientific computation
Numerical linear algebra
Sciences and techniques of general use
title Statistical condition estimation for linear systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T07%3A11%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Statistical%20condition%20estimation%20for%20linear%20systems&rft.jtitle=SIAM%20journal%20on%20scientific%20computing&rft.au=KENNEY,%20C.%20S&rft.date=1998-03-01&rft.volume=19&rft.issue=2&rft.spage=566&rft.epage=583&rft.pages=566-583&rft.issn=1064-8275&rft.eissn=1095-7197&rft.coden=SJOCE3&rft_id=info:doi/10.1137/S1064827595282519&rft_dat=%3Cproquest_cross%3E2586718431%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=921471842&rft_id=info:pmid/&rfr_iscdi=true