Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes

Transparent, elastic conductors are essential components of electronic and optoelectronic devices that facilitate human interaction and biofeedback, such as interactive electronics 1 , implantable medical devices 2 and robotic systems with human-like sensing capabilities 3 . The availability of cond...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature nanotechnology 2011-12, Vol.6 (12), p.788-792
Hauptverfasser: Lipomi, Darren J., Vosgueritchian, Michael, Tee, Benjamin C-K., Hellstrom, Sondra L., Lee, Jennifer A., Fox, Courtney H., Bao, Zhenan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 792
container_issue 12
container_start_page 788
container_title Nature nanotechnology
container_volume 6
creator Lipomi, Darren J.
Vosgueritchian, Michael
Tee, Benjamin C-K.
Hellstrom, Sondra L.
Lee, Jennifer A.
Fox, Courtney H.
Bao, Zhenan
description Transparent, elastic conductors are essential components of electronic and optoelectronic devices that facilitate human interaction and biofeedback, such as interactive electronics 1 , implantable medical devices 2 and robotic systems with human-like sensing capabilities 3 . The availability of conducting thin films with these properties could lead to the development of skin-like sensors 4 that stretch reversibly, sense pressure (not just touch), bend into hairpin turns, integrate with collapsible, stretchable and mechanically robust displays 5 and solar cells 6 , and also wrap around non-planar and biological 7 , 8 , 9 surfaces such as skin 10 and organs 11 , without wrinkling. We report transparent, conducting spray-deposited films of single-walled carbon nanotubes that can be rendered stretchable by applying strain along each axis, and then releasing this strain. This process produces spring-like structures in the nanotubes that accommodate strains of up to 150% and demonstrate conductivities as high as 2,200 S cm −1 in the stretched state. We also use the nanotube films as electrodes in arrays of transparent, stretchable capacitors, which behave as pressure and strain sensors. Transparent films of carbon nanotubes can accommodate strains of up to 150% and demonstrate conductivities as high as 2,200 S cm −1 in the stretched state.
doi_str_mv 10.1038/nnano.2011.184
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_journals_921308282</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2585417091</sourcerecordid><originalsourceid>FETCH-LOGICAL-p175t-6aa6c93499a28a012c2abd1cc4251334fa72f950bf593f2d7df4c0867e142c243</originalsourceid><addsrcrecordid>eNpFkDtPwzAQgC0EoqWwMiKLPa1faewRVbykSgzAhmRdEhulTZ3gSwb-PS4UmO50991DHyGXnM05k3oRAoRuLhjnc67VEZnyQulMSpMf_-W6mJAzxA1juTBCnZKJECyNCD4lb8_bJmRts3W0jw5xjI5CqCkOEZpA0QXsItIS0NW0CzSVA_YQXRioawGHpqK-aXdIO08riGVi9i8NY-nwnJx4aNFdHOKMvN7dvqwesvXT_ePqZp31vMiHbAmwrIxUxoDQkP6qBJQ1ryolci6l8lAIb3JW-txIL-qi9qpielk4rhKr5Ixc_-ztY_cxOhzsphtjSCetEVwyLbRI0NUBGsudq20fmx3ET_vrIgGLHwBTK7y7-L-FM7u3bb9t271tm2zLL26IcUs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>921308282</pqid></control><display><type>article</type><title>Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes</title><source>MEDLINE</source><source>Nature</source><source>Springer Nature - Complete Springer Journals</source><creator>Lipomi, Darren J. ; Vosgueritchian, Michael ; Tee, Benjamin C-K. ; Hellstrom, Sondra L. ; Lee, Jennifer A. ; Fox, Courtney H. ; Bao, Zhenan</creator><creatorcontrib>Lipomi, Darren J. ; Vosgueritchian, Michael ; Tee, Benjamin C-K. ; Hellstrom, Sondra L. ; Lee, Jennifer A. ; Fox, Courtney H. ; Bao, Zhenan</creatorcontrib><description>Transparent, elastic conductors are essential components of electronic and optoelectronic devices that facilitate human interaction and biofeedback, such as interactive electronics 1 , implantable medical devices 2 and robotic systems with human-like sensing capabilities 3 . The availability of conducting thin films with these properties could lead to the development of skin-like sensors 4 that stretch reversibly, sense pressure (not just touch), bend into hairpin turns, integrate with collapsible, stretchable and mechanically robust displays 5 and solar cells 6 , and also wrap around non-planar and biological 7 , 8 , 9 surfaces such as skin 10 and organs 11 , without wrinkling. We report transparent, conducting spray-deposited films of single-walled carbon nanotubes that can be rendered stretchable by applying strain along each axis, and then releasing this strain. This process produces spring-like structures in the nanotubes that accommodate strains of up to 150% and demonstrate conductivities as high as 2,200 S cm −1 in the stretched state. We also use the nanotube films as electrodes in arrays of transparent, stretchable capacitors, which behave as pressure and strain sensors. Transparent films of carbon nanotubes can accommodate strains of up to 150% and demonstrate conductivities as high as 2,200 S cm −1 in the stretched state.</description><identifier>ISSN: 1748-3387</identifier><identifier>EISSN: 1748-3395</identifier><identifier>DOI: 10.1038/nnano.2011.184</identifier><identifier>PMID: 22020121</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/925/357/537 ; 639/925/357/73 ; 639/925/927/511 ; Animals ; Biosensing Techniques - instrumentation ; Carbon ; Chemistry and Materials Science ; Composite materials ; Conductivity ; Elasticity ; Electrodes ; Electronics ; Graphene ; Humans ; letter ; Materials Science ; Medical equipment ; Nanotechnology ; Nanotechnology - instrumentation ; Nanotechnology and Microengineering ; Nanotubes, Carbon - chemistry ; Pressure ; Sensors ; Skin ; Skin Physiological Phenomena ; Solar cells ; Surface Properties ; Thin films</subject><ispartof>Nature nanotechnology, 2011-12, Vol.6 (12), p.788-792</ispartof><rights>Springer Nature Limited 2011</rights><rights>Copyright Nature Publishing Group Dec 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-p175t-6aa6c93499a28a012c2abd1cc4251334fa72f950bf593f2d7df4c0867e142c243</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nnano.2011.184$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nnano.2011.184$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22020121$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lipomi, Darren J.</creatorcontrib><creatorcontrib>Vosgueritchian, Michael</creatorcontrib><creatorcontrib>Tee, Benjamin C-K.</creatorcontrib><creatorcontrib>Hellstrom, Sondra L.</creatorcontrib><creatorcontrib>Lee, Jennifer A.</creatorcontrib><creatorcontrib>Fox, Courtney H.</creatorcontrib><creatorcontrib>Bao, Zhenan</creatorcontrib><title>Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes</title><title>Nature nanotechnology</title><addtitle>Nature Nanotech</addtitle><addtitle>Nat Nanotechnol</addtitle><description>Transparent, elastic conductors are essential components of electronic and optoelectronic devices that facilitate human interaction and biofeedback, such as interactive electronics 1 , implantable medical devices 2 and robotic systems with human-like sensing capabilities 3 . The availability of conducting thin films with these properties could lead to the development of skin-like sensors 4 that stretch reversibly, sense pressure (not just touch), bend into hairpin turns, integrate with collapsible, stretchable and mechanically robust displays 5 and solar cells 6 , and also wrap around non-planar and biological 7 , 8 , 9 surfaces such as skin 10 and organs 11 , without wrinkling. We report transparent, conducting spray-deposited films of single-walled carbon nanotubes that can be rendered stretchable by applying strain along each axis, and then releasing this strain. This process produces spring-like structures in the nanotubes that accommodate strains of up to 150% and demonstrate conductivities as high as 2,200 S cm −1 in the stretched state. We also use the nanotube films as electrodes in arrays of transparent, stretchable capacitors, which behave as pressure and strain sensors. Transparent films of carbon nanotubes can accommodate strains of up to 150% and demonstrate conductivities as high as 2,200 S cm −1 in the stretched state.</description><subject>639/925/357/537</subject><subject>639/925/357/73</subject><subject>639/925/927/511</subject><subject>Animals</subject><subject>Biosensing Techniques - instrumentation</subject><subject>Carbon</subject><subject>Chemistry and Materials Science</subject><subject>Composite materials</subject><subject>Conductivity</subject><subject>Elasticity</subject><subject>Electrodes</subject><subject>Electronics</subject><subject>Graphene</subject><subject>Humans</subject><subject>letter</subject><subject>Materials Science</subject><subject>Medical equipment</subject><subject>Nanotechnology</subject><subject>Nanotechnology - instrumentation</subject><subject>Nanotechnology and Microengineering</subject><subject>Nanotubes, Carbon - chemistry</subject><subject>Pressure</subject><subject>Sensors</subject><subject>Skin</subject><subject>Skin Physiological Phenomena</subject><subject>Solar cells</subject><subject>Surface Properties</subject><subject>Thin films</subject><issn>1748-3387</issn><issn>1748-3395</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpFkDtPwzAQgC0EoqWwMiKLPa1faewRVbykSgzAhmRdEhulTZ3gSwb-PS4UmO50991DHyGXnM05k3oRAoRuLhjnc67VEZnyQulMSpMf_-W6mJAzxA1juTBCnZKJECyNCD4lb8_bJmRts3W0jw5xjI5CqCkOEZpA0QXsItIS0NW0CzSVA_YQXRioawGHpqK-aXdIO08riGVi9i8NY-nwnJx4aNFdHOKMvN7dvqwesvXT_ePqZp31vMiHbAmwrIxUxoDQkP6qBJQ1ryolci6l8lAIb3JW-txIL-qi9qpielk4rhKr5Ixc_-ztY_cxOhzsphtjSCetEVwyLbRI0NUBGsudq20fmx3ET_vrIgGLHwBTK7y7-L-FM7u3bb9t271tm2zLL26IcUs</recordid><startdate>20111201</startdate><enddate>20111201</enddate><creator>Lipomi, Darren J.</creator><creator>Vosgueritchian, Michael</creator><creator>Tee, Benjamin C-K.</creator><creator>Hellstrom, Sondra L.</creator><creator>Lee, Jennifer A.</creator><creator>Fox, Courtney H.</creator><creator>Bao, Zhenan</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>3V.</scope><scope>7QO</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20111201</creationdate><title>Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes</title><author>Lipomi, Darren J. ; Vosgueritchian, Michael ; Tee, Benjamin C-K. ; Hellstrom, Sondra L. ; Lee, Jennifer A. ; Fox, Courtney H. ; Bao, Zhenan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p175t-6aa6c93499a28a012c2abd1cc4251334fa72f950bf593f2d7df4c0867e142c243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>639/925/357/537</topic><topic>639/925/357/73</topic><topic>639/925/927/511</topic><topic>Animals</topic><topic>Biosensing Techniques - instrumentation</topic><topic>Carbon</topic><topic>Chemistry and Materials Science</topic><topic>Composite materials</topic><topic>Conductivity</topic><topic>Elasticity</topic><topic>Electrodes</topic><topic>Electronics</topic><topic>Graphene</topic><topic>Humans</topic><topic>letter</topic><topic>Materials Science</topic><topic>Medical equipment</topic><topic>Nanotechnology</topic><topic>Nanotechnology - instrumentation</topic><topic>Nanotechnology and Microengineering</topic><topic>Nanotubes, Carbon - chemistry</topic><topic>Pressure</topic><topic>Sensors</topic><topic>Skin</topic><topic>Skin Physiological Phenomena</topic><topic>Solar cells</topic><topic>Surface Properties</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lipomi, Darren J.</creatorcontrib><creatorcontrib>Vosgueritchian, Michael</creatorcontrib><creatorcontrib>Tee, Benjamin C-K.</creatorcontrib><creatorcontrib>Hellstrom, Sondra L.</creatorcontrib><creatorcontrib>Lee, Jennifer A.</creatorcontrib><creatorcontrib>Fox, Courtney H.</creatorcontrib><creatorcontrib>Bao, Zhenan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Nature nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lipomi, Darren J.</au><au>Vosgueritchian, Michael</au><au>Tee, Benjamin C-K.</au><au>Hellstrom, Sondra L.</au><au>Lee, Jennifer A.</au><au>Fox, Courtney H.</au><au>Bao, Zhenan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes</atitle><jtitle>Nature nanotechnology</jtitle><stitle>Nature Nanotech</stitle><addtitle>Nat Nanotechnol</addtitle><date>2011-12-01</date><risdate>2011</risdate><volume>6</volume><issue>12</issue><spage>788</spage><epage>792</epage><pages>788-792</pages><issn>1748-3387</issn><eissn>1748-3395</eissn><abstract>Transparent, elastic conductors are essential components of electronic and optoelectronic devices that facilitate human interaction and biofeedback, such as interactive electronics 1 , implantable medical devices 2 and robotic systems with human-like sensing capabilities 3 . The availability of conducting thin films with these properties could lead to the development of skin-like sensors 4 that stretch reversibly, sense pressure (not just touch), bend into hairpin turns, integrate with collapsible, stretchable and mechanically robust displays 5 and solar cells 6 , and also wrap around non-planar and biological 7 , 8 , 9 surfaces such as skin 10 and organs 11 , without wrinkling. We report transparent, conducting spray-deposited films of single-walled carbon nanotubes that can be rendered stretchable by applying strain along each axis, and then releasing this strain. This process produces spring-like structures in the nanotubes that accommodate strains of up to 150% and demonstrate conductivities as high as 2,200 S cm −1 in the stretched state. We also use the nanotube films as electrodes in arrays of transparent, stretchable capacitors, which behave as pressure and strain sensors. Transparent films of carbon nanotubes can accommodate strains of up to 150% and demonstrate conductivities as high as 2,200 S cm −1 in the stretched state.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>22020121</pmid><doi>10.1038/nnano.2011.184</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1748-3387
ispartof Nature nanotechnology, 2011-12, Vol.6 (12), p.788-792
issn 1748-3387
1748-3395
language eng
recordid cdi_proquest_journals_921308282
source MEDLINE; Nature; Springer Nature - Complete Springer Journals
subjects 639/925/357/537
639/925/357/73
639/925/927/511
Animals
Biosensing Techniques - instrumentation
Carbon
Chemistry and Materials Science
Composite materials
Conductivity
Elasticity
Electrodes
Electronics
Graphene
Humans
letter
Materials Science
Medical equipment
Nanotechnology
Nanotechnology - instrumentation
Nanotechnology and Microengineering
Nanotubes, Carbon - chemistry
Pressure
Sensors
Skin
Skin Physiological Phenomena
Solar cells
Surface Properties
Thin films
title Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T05%3A49%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Skin-like%20pressure%20and%20strain%20sensors%20based%20on%20transparent%20elastic%20films%20of%20carbon%20nanotubes&rft.jtitle=Nature%20nanotechnology&rft.au=Lipomi,%20Darren%20J.&rft.date=2011-12-01&rft.volume=6&rft.issue=12&rft.spage=788&rft.epage=792&rft.pages=788-792&rft.issn=1748-3387&rft.eissn=1748-3395&rft_id=info:doi/10.1038/nnano.2011.184&rft_dat=%3Cproquest_pubme%3E2585417091%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=921308282&rft_id=info:pmid/22020121&rfr_iscdi=true