The immersed interface/multigrid methods for interface problems

New multigrid methods are developed for the maximum principle preserving immersed interface method applied to second order linear elliptic and parabolic PDEs that involve interfaces and discontinuities. For elliptic interface problems, the multigrid solver developed in this paper works while some ot...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on scientific computing 2002-01, Vol.24 (2), p.463-479
Hauptverfasser: ADAMS, Loyce, ZHILIN LI
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 479
container_issue 2
container_start_page 463
container_title SIAM journal on scientific computing
container_volume 24
creator ADAMS, Loyce
ZHILIN LI
description New multigrid methods are developed for the maximum principle preserving immersed interface method applied to second order linear elliptic and parabolic PDEs that involve interfaces and discontinuities. For elliptic interface problems, the multigrid solver developed in this paper works while some other multigrid solvers do not. For linear parabolic equations, we have developed the second order maximum principle preserving finite difference scheme in this paper. We use the Crank--Nicolson scheme to deal with the diffusion part and an explicit scheme for the first order derivatives. Numerical examples are also presented.
doi_str_mv 10.1137/S1064827501389849
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_921280817</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2585176141</sourcerecordid><originalsourceid>FETCH-LOGICAL-c300t-13cc62043dcd719e4a76dc2a3a7c0890d946360a6ff26913d96f3248cc551e733</originalsourceid><addsrcrecordid>eNplUMtKw0AUHUTBWv0Ad0FwGXvvzGQeK5FiVSi4sK7DOA-bkkedSRb-vQktdOHqXjhPDiG3CA-ITC4-EARXVBaATGnF9RmZIegil6jl-fQLnk_4JblKaQeAgms6I4-brc-qpvExeZdVbe9jMNYvmqHuq-9Yuazx_bZzKQtdPOHZPnZftW_SNbkIpk7-5njn5HP1vFm-5uv3l7fl0zq3DKDPkVkrKHDmrBsbeW6kcJYaZqQFpcFpLpgAI0KgQiNzWgRGubK2KNBLxubk7uA7Bv8MPvXlrhtiO0aWmiJVoFCOJDyQbOxSij6U-1g1Jv6WCOU0U_lvplFzfzQ2yZo6RNPaKp2EYy9ABewPq3FmPg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>921280817</pqid></control><display><type>article</type><title>The immersed interface/multigrid methods for interface problems</title><source>SIAM Journals Online</source><creator>ADAMS, Loyce ; ZHILIN LI</creator><creatorcontrib>ADAMS, Loyce ; ZHILIN LI</creatorcontrib><description>New multigrid methods are developed for the maximum principle preserving immersed interface method applied to second order linear elliptic and parabolic PDEs that involve interfaces and discontinuities. For elliptic interface problems, the multigrid solver developed in this paper works while some other multigrid solvers do not. For linear parabolic equations, we have developed the second order maximum principle preserving finite difference scheme in this paper. We use the Crank--Nicolson scheme to deal with the diffusion part and an explicit scheme for the first order derivatives. Numerical examples are also presented.</description><identifier>ISSN: 1064-8275</identifier><identifier>EISSN: 1095-7197</identifier><identifier>DOI: 10.1137/S1064827501389849</identifier><identifier>CODEN: SJOCE3</identifier><language>eng</language><publisher>Philadelphia, PA: Society for Industrial and Applied Mathematics</publisher><subject>Applied mathematics ; Composite materials ; Exact sciences and technology ; Interfaces ; Mathematics ; Methods ; Numerical analysis ; Numerical analysis. Scientific computation ; Partial differential equations, boundary value problems ; Sciences and techniques of general use</subject><ispartof>SIAM journal on scientific computing, 2002-01, Vol.24 (2), p.463-479</ispartof><rights>2003 INIST-CNRS</rights><rights>[Copyright] © 2002 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c300t-13cc62043dcd719e4a76dc2a3a7c0890d946360a6ff26913d96f3248cc551e733</citedby><cites>FETCH-LOGICAL-c300t-13cc62043dcd719e4a76dc2a3a7c0890d946360a6ff26913d96f3248cc551e733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3184,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14630180$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>ADAMS, Loyce</creatorcontrib><creatorcontrib>ZHILIN LI</creatorcontrib><title>The immersed interface/multigrid methods for interface problems</title><title>SIAM journal on scientific computing</title><description>New multigrid methods are developed for the maximum principle preserving immersed interface method applied to second order linear elliptic and parabolic PDEs that involve interfaces and discontinuities. For elliptic interface problems, the multigrid solver developed in this paper works while some other multigrid solvers do not. For linear parabolic equations, we have developed the second order maximum principle preserving finite difference scheme in this paper. We use the Crank--Nicolson scheme to deal with the diffusion part and an explicit scheme for the first order derivatives. Numerical examples are also presented.</description><subject>Applied mathematics</subject><subject>Composite materials</subject><subject>Exact sciences and technology</subject><subject>Interfaces</subject><subject>Mathematics</subject><subject>Methods</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Partial differential equations, boundary value problems</subject><subject>Sciences and techniques of general use</subject><issn>1064-8275</issn><issn>1095-7197</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNplUMtKw0AUHUTBWv0Ad0FwGXvvzGQeK5FiVSi4sK7DOA-bkkedSRb-vQktdOHqXjhPDiG3CA-ITC4-EARXVBaATGnF9RmZIegil6jl-fQLnk_4JblKaQeAgms6I4-brc-qpvExeZdVbe9jMNYvmqHuq-9Yuazx_bZzKQtdPOHZPnZftW_SNbkIpk7-5njn5HP1vFm-5uv3l7fl0zq3DKDPkVkrKHDmrBsbeW6kcJYaZqQFpcFpLpgAI0KgQiNzWgRGubK2KNBLxubk7uA7Bv8MPvXlrhtiO0aWmiJVoFCOJDyQbOxSij6U-1g1Jv6WCOU0U_lvplFzfzQ2yZo6RNPaKp2EYy9ABewPq3FmPg</recordid><startdate>20020101</startdate><enddate>20020101</enddate><creator>ADAMS, Loyce</creator><creator>ZHILIN LI</creator><general>Society for Industrial and Applied Mathematics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>20020101</creationdate><title>The immersed interface/multigrid methods for interface problems</title><author>ADAMS, Loyce ; ZHILIN LI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c300t-13cc62043dcd719e4a76dc2a3a7c0890d946360a6ff26913d96f3248cc551e733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Applied mathematics</topic><topic>Composite materials</topic><topic>Exact sciences and technology</topic><topic>Interfaces</topic><topic>Mathematics</topic><topic>Methods</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Partial differential equations, boundary value problems</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ADAMS, Loyce</creatorcontrib><creatorcontrib>ZHILIN LI</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on scientific computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ADAMS, Loyce</au><au>ZHILIN LI</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The immersed interface/multigrid methods for interface problems</atitle><jtitle>SIAM journal on scientific computing</jtitle><date>2002-01-01</date><risdate>2002</risdate><volume>24</volume><issue>2</issue><spage>463</spage><epage>479</epage><pages>463-479</pages><issn>1064-8275</issn><eissn>1095-7197</eissn><coden>SJOCE3</coden><abstract>New multigrid methods are developed for the maximum principle preserving immersed interface method applied to second order linear elliptic and parabolic PDEs that involve interfaces and discontinuities. For elliptic interface problems, the multigrid solver developed in this paper works while some other multigrid solvers do not. For linear parabolic equations, we have developed the second order maximum principle preserving finite difference scheme in this paper. We use the Crank--Nicolson scheme to deal with the diffusion part and an explicit scheme for the first order derivatives. Numerical examples are also presented.</abstract><cop>Philadelphia, PA</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/S1064827501389849</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1064-8275
ispartof SIAM journal on scientific computing, 2002-01, Vol.24 (2), p.463-479
issn 1064-8275
1095-7197
language eng
recordid cdi_proquest_journals_921280817
source SIAM Journals Online
subjects Applied mathematics
Composite materials
Exact sciences and technology
Interfaces
Mathematics
Methods
Numerical analysis
Numerical analysis. Scientific computation
Partial differential equations, boundary value problems
Sciences and techniques of general use
title The immersed interface/multigrid methods for interface problems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T21%3A17%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20immersed%20interface/multigrid%20methods%20for%20interface%20problems&rft.jtitle=SIAM%20journal%20on%20scientific%20computing&rft.au=ADAMS,%20Loyce&rft.date=2002-01-01&rft.volume=24&rft.issue=2&rft.spage=463&rft.epage=479&rft.pages=463-479&rft.issn=1064-8275&rft.eissn=1095-7197&rft.coden=SJOCE3&rft_id=info:doi/10.1137/S1064827501389849&rft_dat=%3Cproquest_cross%3E2585176141%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=921280817&rft_id=info:pmid/&rfr_iscdi=true