Adaptive discontinuous Galerkin finite element methods for nonlinear hyperbolic conservation laws

We consider the a posteriori error analysis and adaptive mesh design for discontinuous Galerkin finite element approximations to systems of nonlinear hyperbolic conservation laws. In particular, we discuss the question of error estimation for general target functionals of the solution; typical examp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on scientific computing 2003, Vol.24 (3), p.979-1004
Hauptverfasser: HARTMANN, Ralf, HOUSTON, Paul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1004
container_issue 3
container_start_page 979
container_title SIAM journal on scientific computing
container_volume 24
creator HARTMANN, Ralf
HOUSTON, Paul
description We consider the a posteriori error analysis and adaptive mesh design for discontinuous Galerkin finite element approximations to systems of nonlinear hyperbolic conservation laws. In particular, we discuss the question of error estimation for general target functionals of the solution; typical examples include the outflow flux, local average and pointwise value, as well as the lift and drag coefficients of a body immersed in an inviscid fluid. By employing a duality argument, we derive so-called weighted or Type I a posteriori error bounds; these error estimates include the product of the finite element residuals with local weighting terms involving the solution of a certain dual or adjoint problem that must be numerically approximated. Based on the resulting approximate Type I bound, we design and implement an adaptive algorithm that produces meshes specifically tailored to the efficient computation of the given target functional of practical interest. The performance of the proposed adaptive strategy and the quality of the approximate Type I a posteriori error bound is illustrated by a series of numerical experiments. In particular, we demonstrate the superiority of this approach over standard mesh refinement algorithms which employ Type II error indicators.
doi_str_mv 10.1137/S1064827501389084
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_921275191</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2585145741</sourcerecordid><originalsourceid>FETCH-LOGICAL-c300t-a0b7afc4a0c4d2400d0d7deae856d060cecb4955116274275d39c85cf3cf7f123</originalsourceid><addsrcrecordid>eNplkE9LAzEQxRdRsFY_gLcgeFyd2c1uNsdStAoFD-p5SfOHpm6TNclW-u3d0oIHTzMw7_eG97LsFuEBsWSP7wg1bQpWAZYNh4aeZRMEXuUMOTs_7DXND_fL7CrGDQDWlBeTTMyU6JPdaaJslN4l6wY_RLIQnQ5f1hFjnU2a6E5vtUtkq9Paq0iMD8R511mnRSDrfa_DyndWktEj6rATyXpHOvETr7MLI7qob05zmn0-P33MX_Ll2-J1PlvmsgRIuYAVE0ZSAZKqggIoUExpoZuqVlCD1HJFeVUh1gWjYxBVctlU0pTSMINFOc3ujr598N-Djqnd-CG48WXLCxwB5DiK8CiSwccYtGn7YLci7FuE9lBk-6_Ikbk_GYsoRWeCcNLGP5AyDnXFyl9QxnSe</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>921275191</pqid></control><display><type>article</type><title>Adaptive discontinuous Galerkin finite element methods for nonlinear hyperbolic conservation laws</title><source>SIAM Journals Online</source><creator>HARTMANN, Ralf ; HOUSTON, Paul</creator><creatorcontrib>HARTMANN, Ralf ; HOUSTON, Paul</creatorcontrib><description>We consider the a posteriori error analysis and adaptive mesh design for discontinuous Galerkin finite element approximations to systems of nonlinear hyperbolic conservation laws. In particular, we discuss the question of error estimation for general target functionals of the solution; typical examples include the outflow flux, local average and pointwise value, as well as the lift and drag coefficients of a body immersed in an inviscid fluid. By employing a duality argument, we derive so-called weighted or Type I a posteriori error bounds; these error estimates include the product of the finite element residuals with local weighting terms involving the solution of a certain dual or adjoint problem that must be numerically approximated. Based on the resulting approximate Type I bound, we design and implement an adaptive algorithm that produces meshes specifically tailored to the efficient computation of the given target functional of practical interest. The performance of the proposed adaptive strategy and the quality of the approximate Type I a posteriori error bound is illustrated by a series of numerical experiments. In particular, we demonstrate the superiority of this approach over standard mesh refinement algorithms which employ Type II error indicators.</description><identifier>ISSN: 1064-8275</identifier><identifier>EISSN: 1095-7197</identifier><identifier>DOI: 10.1137/S1064827501389084</identifier><identifier>CODEN: SJOCE3</identifier><language>eng</language><publisher>Philadelphia, PA: Society for Industrial and Applied Mathematics</publisher><subject>Algorithms ; Applied mathematics ; Approximation ; Conservation laws ; Error analysis ; Estimates ; Exact sciences and technology ; Mathematics ; Numerical analysis ; Numerical analysis. Scientific computation ; Partial differential equations, boundary value problems ; Sciences and techniques of general use</subject><ispartof>SIAM journal on scientific computing, 2003, Vol.24 (3), p.979-1004</ispartof><rights>2003 INIST-CNRS</rights><rights>[Copyright] © 2002 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c300t-a0b7afc4a0c4d2400d0d7deae856d060cecb4955116274275d39c85cf3cf7f123</citedby><cites>FETCH-LOGICAL-c300t-a0b7afc4a0c4d2400d0d7deae856d060cecb4955116274275d39c85cf3cf7f123</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,3171,4010,27904,27905,27906</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14790657$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>HARTMANN, Ralf</creatorcontrib><creatorcontrib>HOUSTON, Paul</creatorcontrib><title>Adaptive discontinuous Galerkin finite element methods for nonlinear hyperbolic conservation laws</title><title>SIAM journal on scientific computing</title><description>We consider the a posteriori error analysis and adaptive mesh design for discontinuous Galerkin finite element approximations to systems of nonlinear hyperbolic conservation laws. In particular, we discuss the question of error estimation for general target functionals of the solution; typical examples include the outflow flux, local average and pointwise value, as well as the lift and drag coefficients of a body immersed in an inviscid fluid. By employing a duality argument, we derive so-called weighted or Type I a posteriori error bounds; these error estimates include the product of the finite element residuals with local weighting terms involving the solution of a certain dual or adjoint problem that must be numerically approximated. Based on the resulting approximate Type I bound, we design and implement an adaptive algorithm that produces meshes specifically tailored to the efficient computation of the given target functional of practical interest. The performance of the proposed adaptive strategy and the quality of the approximate Type I a posteriori error bound is illustrated by a series of numerical experiments. In particular, we demonstrate the superiority of this approach over standard mesh refinement algorithms which employ Type II error indicators.</description><subject>Algorithms</subject><subject>Applied mathematics</subject><subject>Approximation</subject><subject>Conservation laws</subject><subject>Error analysis</subject><subject>Estimates</subject><subject>Exact sciences and technology</subject><subject>Mathematics</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Partial differential equations, boundary value problems</subject><subject>Sciences and techniques of general use</subject><issn>1064-8275</issn><issn>1095-7197</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNplkE9LAzEQxRdRsFY_gLcgeFyd2c1uNsdStAoFD-p5SfOHpm6TNclW-u3d0oIHTzMw7_eG97LsFuEBsWSP7wg1bQpWAZYNh4aeZRMEXuUMOTs_7DXND_fL7CrGDQDWlBeTTMyU6JPdaaJslN4l6wY_RLIQnQ5f1hFjnU2a6E5vtUtkq9Paq0iMD8R511mnRSDrfa_DyndWktEj6rATyXpHOvETr7MLI7qob05zmn0-P33MX_Ll2-J1PlvmsgRIuYAVE0ZSAZKqggIoUExpoZuqVlCD1HJFeVUh1gWjYxBVctlU0pTSMINFOc3ujr598N-Djqnd-CG48WXLCxwB5DiK8CiSwccYtGn7YLci7FuE9lBk-6_Ikbk_GYsoRWeCcNLGP5AyDnXFyl9QxnSe</recordid><startdate>2003</startdate><enddate>2003</enddate><creator>HARTMANN, Ralf</creator><creator>HOUSTON, Paul</creator><general>Society for Industrial and Applied Mathematics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>2003</creationdate><title>Adaptive discontinuous Galerkin finite element methods for nonlinear hyperbolic conservation laws</title><author>HARTMANN, Ralf ; HOUSTON, Paul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c300t-a0b7afc4a0c4d2400d0d7deae856d060cecb4955116274275d39c85cf3cf7f123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Algorithms</topic><topic>Applied mathematics</topic><topic>Approximation</topic><topic>Conservation laws</topic><topic>Error analysis</topic><topic>Estimates</topic><topic>Exact sciences and technology</topic><topic>Mathematics</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Partial differential equations, boundary value problems</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>HARTMANN, Ralf</creatorcontrib><creatorcontrib>HOUSTON, Paul</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on scientific computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>HARTMANN, Ralf</au><au>HOUSTON, Paul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive discontinuous Galerkin finite element methods for nonlinear hyperbolic conservation laws</atitle><jtitle>SIAM journal on scientific computing</jtitle><date>2003</date><risdate>2003</risdate><volume>24</volume><issue>3</issue><spage>979</spage><epage>1004</epage><pages>979-1004</pages><issn>1064-8275</issn><eissn>1095-7197</eissn><coden>SJOCE3</coden><abstract>We consider the a posteriori error analysis and adaptive mesh design for discontinuous Galerkin finite element approximations to systems of nonlinear hyperbolic conservation laws. In particular, we discuss the question of error estimation for general target functionals of the solution; typical examples include the outflow flux, local average and pointwise value, as well as the lift and drag coefficients of a body immersed in an inviscid fluid. By employing a duality argument, we derive so-called weighted or Type I a posteriori error bounds; these error estimates include the product of the finite element residuals with local weighting terms involving the solution of a certain dual or adjoint problem that must be numerically approximated. Based on the resulting approximate Type I bound, we design and implement an adaptive algorithm that produces meshes specifically tailored to the efficient computation of the given target functional of practical interest. The performance of the proposed adaptive strategy and the quality of the approximate Type I a posteriori error bound is illustrated by a series of numerical experiments. In particular, we demonstrate the superiority of this approach over standard mesh refinement algorithms which employ Type II error indicators.</abstract><cop>Philadelphia, PA</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/S1064827501389084</doi><tpages>26</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1064-8275
ispartof SIAM journal on scientific computing, 2003, Vol.24 (3), p.979-1004
issn 1064-8275
1095-7197
language eng
recordid cdi_proquest_journals_921275191
source SIAM Journals Online
subjects Algorithms
Applied mathematics
Approximation
Conservation laws
Error analysis
Estimates
Exact sciences and technology
Mathematics
Numerical analysis
Numerical analysis. Scientific computation
Partial differential equations, boundary value problems
Sciences and techniques of general use
title Adaptive discontinuous Galerkin finite element methods for nonlinear hyperbolic conservation laws
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T08%3A10%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20discontinuous%20Galerkin%20finite%20element%20methods%20for%20nonlinear%20hyperbolic%20conservation%20laws&rft.jtitle=SIAM%20journal%20on%20scientific%20computing&rft.au=HARTMANN,%20Ralf&rft.date=2003&rft.volume=24&rft.issue=3&rft.spage=979&rft.epage=1004&rft.pages=979-1004&rft.issn=1064-8275&rft.eissn=1095-7197&rft.coden=SJOCE3&rft_id=info:doi/10.1137/S1064827501389084&rft_dat=%3Cproquest_cross%3E2585145741%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=921275191&rft_id=info:pmid/&rfr_iscdi=true