Direct evaluation of hypersingular Galerkin surface integrals
A direct algorithm for evaluating hypersingular integrals arising in a three-dimensional Galerkin boundary integral analysis is presented. The singular integrals are defined as limits to the boundary, and by integrating two of the four dimensions analytically, the coincident integral is shown to be...
Gespeichert in:
Veröffentlicht in: | SIAM journal on scientific computing 2004, Vol.25 (5), p.1534-1556 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1556 |
---|---|
container_issue | 5 |
container_start_page | 1534 |
container_title | SIAM journal on scientific computing |
container_volume | 25 |
creator | GRAY, L. J GLAESER, J. M KAPLAN, T |
description | A direct algorithm for evaluating hypersingular integrals arising in a three-dimensional Galerkin boundary integral analysis is presented. The singular integrals are defined as limits to the boundary, and by integrating two of the four dimensions analytically, the coincident integral is shown to be divergent. However, the divergent terms can be explicitly calculated and shown to cancel with corresponding singularities in the adjacent edge integrals. A single analytic integration is employed for the edge and vertex singular integrals. This is sufficient to display the divergent term in the edge-adjacent integral and to show that the vertex integral is finite. By explicitly identifying the divergent quantities, we can compute the hypersingular integral without recourse to Stokes's theorem or the Hadamard finite part. The algorithms are developed in the context of a linear element approximation for the Laplace equation but are expected to be generally applicable. As an example, the algorithms are applied to solve a thermal problem in an exponentially graded material. |
doi_str_mv | 10.1137/S1064827502405999 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_921238418</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2584912241</sourcerecordid><originalsourceid>FETCH-LOGICAL-c300t-c0a610beefdf974e02b77f46c23c32b127e85ca0ced299692b02346348b7e5933</originalsourceid><addsrcrecordid>eNplUMFKxDAUDKLguvoB3orgsfpekibNwYOsugoLHtRzSbMva9barkkr7N_bZQUPMocZeDPzYBg7R7hCFPr6BUHJkusCuITCGHPAJgimyDUafbjTSua7-zE7SWkNgEoaPmE3dyGS6zP6ts1g-9C1Weez9-2GYgrtamhszOa2ofgR2iwN0VtHWWh7WkXbpFN25Eeis1-esreH-9fZY754nj_Nbhe5EwB97sAqhJrIL73RkoDXWnupHBdO8Bq5prJwFhwtuTHK8Bq4kErIstZUGCGm7GLfu4nd10Cpr9bdENvxZWU4clFKLEcT7k0udilF8tUmhk8btxVCtRup-jfSmLn8LbbJ2cZH27qQ_oIKSj1C_AAWZ2YD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>921238418</pqid></control><display><type>article</type><title>Direct evaluation of hypersingular Galerkin surface integrals</title><source>SIAM Journals Online</source><creator>GRAY, L. J ; GLAESER, J. M ; KAPLAN, T</creator><creatorcontrib>GRAY, L. J ; GLAESER, J. M ; KAPLAN, T</creatorcontrib><description>A direct algorithm for evaluating hypersingular integrals arising in a three-dimensional Galerkin boundary integral analysis is presented. The singular integrals are defined as limits to the boundary, and by integrating two of the four dimensions analytically, the coincident integral is shown to be divergent. However, the divergent terms can be explicitly calculated and shown to cancel with corresponding singularities in the adjacent edge integrals. A single analytic integration is employed for the edge and vertex singular integrals. This is sufficient to display the divergent term in the edge-adjacent integral and to show that the vertex integral is finite. By explicitly identifying the divergent quantities, we can compute the hypersingular integral without recourse to Stokes's theorem or the Hadamard finite part. The algorithms are developed in the context of a linear element approximation for the Laplace equation but are expected to be generally applicable. As an example, the algorithms are applied to solve a thermal problem in an exponentially graded material.</description><identifier>ISSN: 1064-8275</identifier><identifier>EISSN: 1095-7197</identifier><identifier>DOI: 10.1137/S1064827502405999</identifier><identifier>CODEN: SJOCE3</identifier><language>eng</language><publisher>Philadelphia, PA: Society for Industrial and Applied Mathematics</publisher><subject>Algorithms ; Applied mathematics ; Approximation ; Coordinate transformations ; Exact sciences and technology ; Integral equations ; Integral equations, integral transforms ; Integrals ; Laboratories ; Mathematical analysis ; Mathematics ; Methods ; Numerical analysis ; Numerical analysis. Scientific computation ; Sciences and techniques of general use</subject><ispartof>SIAM journal on scientific computing, 2004, Vol.25 (5), p.1534-1556</ispartof><rights>2004 INIST-CNRS</rights><rights>[Copyright] © 2004 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c300t-c0a610beefdf974e02b77f46c23c32b127e85ca0ced299692b02346348b7e5933</citedby><cites>FETCH-LOGICAL-c300t-c0a610beefdf974e02b77f46c23c32b127e85ca0ced299692b02346348b7e5933</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3171,4010,27900,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16087878$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>GRAY, L. J</creatorcontrib><creatorcontrib>GLAESER, J. M</creatorcontrib><creatorcontrib>KAPLAN, T</creatorcontrib><title>Direct evaluation of hypersingular Galerkin surface integrals</title><title>SIAM journal on scientific computing</title><description>A direct algorithm for evaluating hypersingular integrals arising in a three-dimensional Galerkin boundary integral analysis is presented. The singular integrals are defined as limits to the boundary, and by integrating two of the four dimensions analytically, the coincident integral is shown to be divergent. However, the divergent terms can be explicitly calculated and shown to cancel with corresponding singularities in the adjacent edge integrals. A single analytic integration is employed for the edge and vertex singular integrals. This is sufficient to display the divergent term in the edge-adjacent integral and to show that the vertex integral is finite. By explicitly identifying the divergent quantities, we can compute the hypersingular integral without recourse to Stokes's theorem or the Hadamard finite part. The algorithms are developed in the context of a linear element approximation for the Laplace equation but are expected to be generally applicable. As an example, the algorithms are applied to solve a thermal problem in an exponentially graded material.</description><subject>Algorithms</subject><subject>Applied mathematics</subject><subject>Approximation</subject><subject>Coordinate transformations</subject><subject>Exact sciences and technology</subject><subject>Integral equations</subject><subject>Integral equations, integral transforms</subject><subject>Integrals</subject><subject>Laboratories</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Methods</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Sciences and techniques of general use</subject><issn>1064-8275</issn><issn>1095-7197</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNplUMFKxDAUDKLguvoB3orgsfpekibNwYOsugoLHtRzSbMva9barkkr7N_bZQUPMocZeDPzYBg7R7hCFPr6BUHJkusCuITCGHPAJgimyDUafbjTSua7-zE7SWkNgEoaPmE3dyGS6zP6ts1g-9C1Weez9-2GYgrtamhszOa2ofgR2iwN0VtHWWh7WkXbpFN25Eeis1-esreH-9fZY754nj_Nbhe5EwB97sAqhJrIL73RkoDXWnupHBdO8Bq5prJwFhwtuTHK8Bq4kErIstZUGCGm7GLfu4nd10Cpr9bdENvxZWU4clFKLEcT7k0udilF8tUmhk8btxVCtRup-jfSmLn8LbbJ2cZH27qQ_oIKSj1C_AAWZ2YD</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>GRAY, L. J</creator><creator>GLAESER, J. M</creator><creator>KAPLAN, T</creator><general>Society for Industrial and Applied Mathematics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>2004</creationdate><title>Direct evaluation of hypersingular Galerkin surface integrals</title><author>GRAY, L. J ; GLAESER, J. M ; KAPLAN, T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c300t-c0a610beefdf974e02b77f46c23c32b127e85ca0ced299692b02346348b7e5933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Algorithms</topic><topic>Applied mathematics</topic><topic>Approximation</topic><topic>Coordinate transformations</topic><topic>Exact sciences and technology</topic><topic>Integral equations</topic><topic>Integral equations, integral transforms</topic><topic>Integrals</topic><topic>Laboratories</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Methods</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>GRAY, L. J</creatorcontrib><creatorcontrib>GLAESER, J. M</creatorcontrib><creatorcontrib>KAPLAN, T</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on scientific computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>GRAY, L. J</au><au>GLAESER, J. M</au><au>KAPLAN, T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Direct evaluation of hypersingular Galerkin surface integrals</atitle><jtitle>SIAM journal on scientific computing</jtitle><date>2004</date><risdate>2004</risdate><volume>25</volume><issue>5</issue><spage>1534</spage><epage>1556</epage><pages>1534-1556</pages><issn>1064-8275</issn><eissn>1095-7197</eissn><coden>SJOCE3</coden><abstract>A direct algorithm for evaluating hypersingular integrals arising in a three-dimensional Galerkin boundary integral analysis is presented. The singular integrals are defined as limits to the boundary, and by integrating two of the four dimensions analytically, the coincident integral is shown to be divergent. However, the divergent terms can be explicitly calculated and shown to cancel with corresponding singularities in the adjacent edge integrals. A single analytic integration is employed for the edge and vertex singular integrals. This is sufficient to display the divergent term in the edge-adjacent integral and to show that the vertex integral is finite. By explicitly identifying the divergent quantities, we can compute the hypersingular integral without recourse to Stokes's theorem or the Hadamard finite part. The algorithms are developed in the context of a linear element approximation for the Laplace equation but are expected to be generally applicable. As an example, the algorithms are applied to solve a thermal problem in an exponentially graded material.</abstract><cop>Philadelphia, PA</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/S1064827502405999</doi><tpages>23</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1064-8275 |
ispartof | SIAM journal on scientific computing, 2004, Vol.25 (5), p.1534-1556 |
issn | 1064-8275 1095-7197 |
language | eng |
recordid | cdi_proquest_journals_921238418 |
source | SIAM Journals Online |
subjects | Algorithms Applied mathematics Approximation Coordinate transformations Exact sciences and technology Integral equations Integral equations, integral transforms Integrals Laboratories Mathematical analysis Mathematics Methods Numerical analysis Numerical analysis. Scientific computation Sciences and techniques of general use |
title | Direct evaluation of hypersingular Galerkin surface integrals |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T23%3A27%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Direct%20evaluation%20of%20hypersingular%20Galerkin%20surface%20integrals&rft.jtitle=SIAM%20journal%20on%20scientific%20computing&rft.au=GRAY,%20L.%20J&rft.date=2004&rft.volume=25&rft.issue=5&rft.spage=1534&rft.epage=1556&rft.pages=1534-1556&rft.issn=1064-8275&rft.eissn=1095-7197&rft.coden=SJOCE3&rft_id=info:doi/10.1137/S1064827502405999&rft_dat=%3Cproquest_cross%3E2584912241%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=921238418&rft_id=info:pmid/&rfr_iscdi=true |