A nonlinear galerkin scheme involving vector and tensor spherical harmonics for solving the incompressible navier-stokes equation on the sphere
This work is concerned with a nonlinear Galerkin method for solving the incompressible Navier--Stokes equation on the sphere. It extends the work of [A. Debussche, T. Dubois, and R. Temam, Theoret. Comput. Fluid Dyn., 7 (1995), pp. 279--315; M. Marion and R. Temam, SIAM J. Numer. Anal., 26 (1989), p...
Gespeichert in:
Veröffentlicht in: | SIAM journal on scientific computing 2005-01, Vol.27 (3), p.967-994 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 994 |
---|---|
container_issue | 3 |
container_start_page | 967 |
container_title | SIAM journal on scientific computing |
container_volume | 27 |
creator | FENGLER, M. J FREEDEN, W |
description | This work is concerned with a nonlinear Galerkin method for solving the incompressible Navier--Stokes equation on the sphere. It extends the work of [A. Debussche, T. Dubois, and R. Temam, Theoret. Comput. Fluid Dyn., 7 (1995), pp. 279--315; M. Marion and R. Temam, SIAM J. Numer. Anal., 26 (1989), pp. 1139--1157; J. Shen and R. Temam, Proceedings of the International Conference on Nonlinear Evolution Partial Differential Equations, AMS, Providence, RI, 1997, pp. 363--376] from one-dimensional or toroidal domains to the spherical geometry. In the first part, the method based on type 3 vector spherical harmonics is introduced and convergence is indicated. Further it is shown that the occurring coupling terms involving three vector spherical harmonics can be expressed algebraically in terms of Wigner-$3j$ coefficients. To improve the numerical efficiency and economy we introduce an FFT-based pseudospectral algorithm for computing the Fourier coefficients of the nonlinear advection term. The resulting method scales with $O(N^3)$ if $N$ denotes the maximal spherical harmonic degree. The latter is demonstrated in an extensive numerical example. |
doi_str_mv | 10.1137/040612567 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_921172561</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2584580001</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-662e12330603c13d1ed1094b8b7731c295e014cb8b691655c394f03445b4627d3</originalsourceid><addsrcrecordid>eNpFUE1LAzEQXUTBWj34D4LgwcNqJskm3WMpfoHgRc9Lmp3tpt0mbbIt-Cv8y2ZtURiYN8N7b5iXZddA7wG4eqCCSmCFVCfZCGhZ5ApKdTpgKfIJU8V5dhHjklKQomSj7HtKnHeddagDWegOw8o6Ek2LayTW7X23t25B9mh6H4h2NenRxQTjpsVgje5Iq8PaO2siaYb9UdG3g9749SZgjHbeIXF6bzHksfcrjAS3O91b70iqgfxriJfZWaO7iFfHPs4-nx4_Zi_52_vz62z6lhvOoM-lZAiMcyopN8BrwDp9K-aTuVIcDCsLpCBMmmUJsigML0VDuRDFXEimaj7Obg6-m-C3O4x9tfS74NLJqmQAKkUIiXR3IJngYwzYVJtg1zp8VUCrIe7qL-7EvT0a6phSaYJ2xsZ_gVKMlUrwH_xtgDg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>921172561</pqid></control><display><type>article</type><title>A nonlinear galerkin scheme involving vector and tensor spherical harmonics for solving the incompressible navier-stokes equation on the sphere</title><source>SIAM Journals Online</source><creator>FENGLER, M. J ; FREEDEN, W</creator><creatorcontrib>FENGLER, M. J ; FREEDEN, W</creatorcontrib><description>This work is concerned with a nonlinear Galerkin method for solving the incompressible Navier--Stokes equation on the sphere. It extends the work of [A. Debussche, T. Dubois, and R. Temam, Theoret. Comput. Fluid Dyn., 7 (1995), pp. 279--315; M. Marion and R. Temam, SIAM J. Numer. Anal., 26 (1989), pp. 1139--1157; J. Shen and R. Temam, Proceedings of the International Conference on Nonlinear Evolution Partial Differential Equations, AMS, Providence, RI, 1997, pp. 363--376] from one-dimensional or toroidal domains to the spherical geometry. In the first part, the method based on type 3 vector spherical harmonics is introduced and convergence is indicated. Further it is shown that the occurring coupling terms involving three vector spherical harmonics can be expressed algebraically in terms of Wigner-$3j$ coefficients. To improve the numerical efficiency and economy we introduce an FFT-based pseudospectral algorithm for computing the Fourier coefficients of the nonlinear advection term. The resulting method scales with $O(N^3)$ if $N$ denotes the maximal spherical harmonic degree. The latter is demonstrated in an extensive numerical example.</description><identifier>ISSN: 1064-8275</identifier><identifier>EISSN: 1095-7197</identifier><identifier>DOI: 10.1137/040612567</identifier><identifier>CODEN: SJOCE3</identifier><language>eng</language><publisher>Philadelphia, PA: Society for Industrial and Applied Mathematics</publisher><subject>Algorithms ; Computational methods in fluid dynamics ; Euclidean space ; Exact sciences and technology ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; Geometry ; Global analysis, analysis on manifolds ; Mathematical analysis ; Mathematics ; Meteorology ; Methods ; Navier-Stokes equations ; Partial differential equations ; Physics ; Sciences and techniques of general use ; Special functions ; Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</subject><ispartof>SIAM journal on scientific computing, 2005-01, Vol.27 (3), p.967-994</ispartof><rights>2006 INIST-CNRS</rights><rights>[Copyright] © 2005 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c321t-662e12330603c13d1ed1094b8b7731c295e014cb8b691655c394f03445b4627d3</citedby><cites>FETCH-LOGICAL-c321t-662e12330603c13d1ed1094b8b7731c295e014cb8b691655c394f03445b4627d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3184,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17722974$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>FENGLER, M. J</creatorcontrib><creatorcontrib>FREEDEN, W</creatorcontrib><title>A nonlinear galerkin scheme involving vector and tensor spherical harmonics for solving the incompressible navier-stokes equation on the sphere</title><title>SIAM journal on scientific computing</title><description>This work is concerned with a nonlinear Galerkin method for solving the incompressible Navier--Stokes equation on the sphere. It extends the work of [A. Debussche, T. Dubois, and R. Temam, Theoret. Comput. Fluid Dyn., 7 (1995), pp. 279--315; M. Marion and R. Temam, SIAM J. Numer. Anal., 26 (1989), pp. 1139--1157; J. Shen and R. Temam, Proceedings of the International Conference on Nonlinear Evolution Partial Differential Equations, AMS, Providence, RI, 1997, pp. 363--376] from one-dimensional or toroidal domains to the spherical geometry. In the first part, the method based on type 3 vector spherical harmonics is introduced and convergence is indicated. Further it is shown that the occurring coupling terms involving three vector spherical harmonics can be expressed algebraically in terms of Wigner-$3j$ coefficients. To improve the numerical efficiency and economy we introduce an FFT-based pseudospectral algorithm for computing the Fourier coefficients of the nonlinear advection term. The resulting method scales with $O(N^3)$ if $N$ denotes the maximal spherical harmonic degree. The latter is demonstrated in an extensive numerical example.</description><subject>Algorithms</subject><subject>Computational methods in fluid dynamics</subject><subject>Euclidean space</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Geometry</subject><subject>Global analysis, analysis on manifolds</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Meteorology</subject><subject>Methods</subject><subject>Navier-Stokes equations</subject><subject>Partial differential equations</subject><subject>Physics</subject><subject>Sciences and techniques of general use</subject><subject>Special functions</subject><subject>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</subject><issn>1064-8275</issn><issn>1095-7197</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpFUE1LAzEQXUTBWj34D4LgwcNqJskm3WMpfoHgRc9Lmp3tpt0mbbIt-Cv8y2ZtURiYN8N7b5iXZddA7wG4eqCCSmCFVCfZCGhZ5ApKdTpgKfIJU8V5dhHjklKQomSj7HtKnHeddagDWegOw8o6Ek2LayTW7X23t25B9mh6H4h2NenRxQTjpsVgje5Iq8PaO2siaYb9UdG3g9749SZgjHbeIXF6bzHksfcrjAS3O91b70iqgfxriJfZWaO7iFfHPs4-nx4_Zi_52_vz62z6lhvOoM-lZAiMcyopN8BrwDp9K-aTuVIcDCsLpCBMmmUJsigML0VDuRDFXEimaj7Obg6-m-C3O4x9tfS74NLJqmQAKkUIiXR3IJngYwzYVJtg1zp8VUCrIe7qL-7EvT0a6phSaYJ2xsZ_gVKMlUrwH_xtgDg</recordid><startdate>20050101</startdate><enddate>20050101</enddate><creator>FENGLER, M. J</creator><creator>FREEDEN, W</creator><general>Society for Industrial and Applied Mathematics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>20050101</creationdate><title>A nonlinear galerkin scheme involving vector and tensor spherical harmonics for solving the incompressible navier-stokes equation on the sphere</title><author>FENGLER, M. J ; FREEDEN, W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-662e12330603c13d1ed1094b8b7731c295e014cb8b691655c394f03445b4627d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Algorithms</topic><topic>Computational methods in fluid dynamics</topic><topic>Euclidean space</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Geometry</topic><topic>Global analysis, analysis on manifolds</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Meteorology</topic><topic>Methods</topic><topic>Navier-Stokes equations</topic><topic>Partial differential equations</topic><topic>Physics</topic><topic>Sciences and techniques of general use</topic><topic>Special functions</topic><topic>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>FENGLER, M. J</creatorcontrib><creatorcontrib>FREEDEN, W</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on scientific computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>FENGLER, M. J</au><au>FREEDEN, W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A nonlinear galerkin scheme involving vector and tensor spherical harmonics for solving the incompressible navier-stokes equation on the sphere</atitle><jtitle>SIAM journal on scientific computing</jtitle><date>2005-01-01</date><risdate>2005</risdate><volume>27</volume><issue>3</issue><spage>967</spage><epage>994</epage><pages>967-994</pages><issn>1064-8275</issn><eissn>1095-7197</eissn><coden>SJOCE3</coden><abstract>This work is concerned with a nonlinear Galerkin method for solving the incompressible Navier--Stokes equation on the sphere. It extends the work of [A. Debussche, T. Dubois, and R. Temam, Theoret. Comput. Fluid Dyn., 7 (1995), pp. 279--315; M. Marion and R. Temam, SIAM J. Numer. Anal., 26 (1989), pp. 1139--1157; J. Shen and R. Temam, Proceedings of the International Conference on Nonlinear Evolution Partial Differential Equations, AMS, Providence, RI, 1997, pp. 363--376] from one-dimensional or toroidal domains to the spherical geometry. In the first part, the method based on type 3 vector spherical harmonics is introduced and convergence is indicated. Further it is shown that the occurring coupling terms involving three vector spherical harmonics can be expressed algebraically in terms of Wigner-$3j$ coefficients. To improve the numerical efficiency and economy we introduce an FFT-based pseudospectral algorithm for computing the Fourier coefficients of the nonlinear advection term. The resulting method scales with $O(N^3)$ if $N$ denotes the maximal spherical harmonic degree. The latter is demonstrated in an extensive numerical example.</abstract><cop>Philadelphia, PA</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/040612567</doi><tpages>28</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1064-8275 |
ispartof | SIAM journal on scientific computing, 2005-01, Vol.27 (3), p.967-994 |
issn | 1064-8275 1095-7197 |
language | eng |
recordid | cdi_proquest_journals_921172561 |
source | SIAM Journals Online |
subjects | Algorithms Computational methods in fluid dynamics Euclidean space Exact sciences and technology Fluid dynamics Fundamental areas of phenomenology (including applications) Geometry Global analysis, analysis on manifolds Mathematical analysis Mathematics Meteorology Methods Navier-Stokes equations Partial differential equations Physics Sciences and techniques of general use Special functions Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds |
title | A nonlinear galerkin scheme involving vector and tensor spherical harmonics for solving the incompressible navier-stokes equation on the sphere |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T19%3A11%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20nonlinear%20galerkin%20scheme%20involving%20vector%20and%20tensor%20spherical%20harmonics%20for%20solving%20the%20incompressible%20navier-stokes%20equation%20on%20the%20sphere&rft.jtitle=SIAM%20journal%20on%20scientific%20computing&rft.au=FENGLER,%20M.%20J&rft.date=2005-01-01&rft.volume=27&rft.issue=3&rft.spage=967&rft.epage=994&rft.pages=967-994&rft.issn=1064-8275&rft.eissn=1095-7197&rft.coden=SJOCE3&rft_id=info:doi/10.1137/040612567&rft_dat=%3Cproquest_cross%3E2584580001%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=921172561&rft_id=info:pmid/&rfr_iscdi=true |