Preconditioning Lanczos approximations to the matrix exponential
The Lanczos method is an iterative procedure to compute an orthogonal basis for the Krylov subspace generated by a symmetric matrix $A$ and a starting vector $v$. An interesting application of this method is the computation of the matrix exponential $\exp(-\tau A)v$. This vector plays an important r...
Gespeichert in:
Veröffentlicht in: | SIAM journal on scientific computing 2006, Vol.27 (4), p.1438-1457 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1457 |
---|---|
container_issue | 4 |
container_start_page | 1438 |
container_title | SIAM journal on scientific computing |
container_volume | 27 |
creator | VAN DEN ESHOF, Jasper HOCHBRUCK, Marlis |
description | The Lanczos method is an iterative procedure to compute an orthogonal basis for the Krylov subspace generated by a symmetric matrix $A$ and a starting vector $v$. An interesting application of this method is the computation of the matrix exponential $\exp(-\tau A)v$. This vector plays an important role in the solution of parabolic equations where $A$ results from some form of discretization of an elliptic operator. In the present paper we will argue that for these applications the convergence behavior of this method can be unsatisfactory. We will propose a modified method that resolves this by a simple preconditioned transformation at the cost of an inner-outer iteration. A priori error bounds are presented that are independent of the norm of $A$. This shows that the worst case convergence speed is independent of the mesh width in the spatial discretization of the elliptic operator. We discuss, furthermore, a posteriori error estimation and the tuning of the coupling between the inner and outer iteration. We conclude with several numerical experiments with the proposed method. |
doi_str_mv | 10.1137/040605461 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_921166310</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2584553031</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-a0a05ff7ceb70d63e33de5df43a5b29b667b3aa7767cbd54bc0f324651d7b8443</originalsourceid><addsrcrecordid>eNpFkE1LAzEQhoMoWKsH_8EiePCwOtl8TPemiF9Q0IOelySbaEpN1mQL1V9vSoueZoZ55uN9CTmlcEkpwyvgIEFwSffIhEIraqQt7m9yyetZg-KQHOW8AKCSt82EXL8ka2Lo_ehj8OG9mqtgfmKu1DCkuPafatPI1Rir8cNWpUx-Xdn1EIMNo1fLY3Lg1DLbk12ckrf7u9fbx3r-_PB0ezOvDZvhWCtQIJxDYzVCL5llrLeid5wpoZtWS4maKYUo0ehecG3AsYZLQXvUM87ZlJxt95a3vlY2j90irlIoJ7u2oVRKRqFAF1vIpJhzsq4bUpGQvjsK3caf7s-fwp7vFqps1NKlItzn_wFsqSgo-wXUcWSY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>921166310</pqid></control><display><type>article</type><title>Preconditioning Lanczos approximations to the matrix exponential</title><source>SIAM Journals Online</source><creator>VAN DEN ESHOF, Jasper ; HOCHBRUCK, Marlis</creator><creatorcontrib>VAN DEN ESHOF, Jasper ; HOCHBRUCK, Marlis</creatorcontrib><description>The Lanczos method is an iterative procedure to compute an orthogonal basis for the Krylov subspace generated by a symmetric matrix $A$ and a starting vector $v$. An interesting application of this method is the computation of the matrix exponential $\exp(-\tau A)v$. This vector plays an important role in the solution of parabolic equations where $A$ results from some form of discretization of an elliptic operator. In the present paper we will argue that for these applications the convergence behavior of this method can be unsatisfactory. We will propose a modified method that resolves this by a simple preconditioned transformation at the cost of an inner-outer iteration. A priori error bounds are presented that are independent of the norm of $A$. This shows that the worst case convergence speed is independent of the mesh width in the spatial discretization of the elliptic operator. We discuss, furthermore, a posteriori error estimation and the tuning of the coupling between the inner and outer iteration. We conclude with several numerical experiments with the proposed method.</description><identifier>ISSN: 1064-8275</identifier><identifier>EISSN: 1095-7197</identifier><identifier>DOI: 10.1137/040605461</identifier><identifier>CODEN: SJOCE3</identifier><language>eng</language><publisher>Philadelphia, PA: Society for Industrial and Applied Mathematics</publisher><subject>Approximation ; Eigenvalues ; Exact sciences and technology ; Experiments ; Mathematics ; Methods ; Numerical analysis ; Numerical analysis. Scientific computation ; Numerical linear algebra ; Ordinary differential equations ; Partial differential equations, boundary value problems ; Polynomials ; Sciences and techniques of general use</subject><ispartof>SIAM journal on scientific computing, 2006, Vol.27 (4), p.1438-1457</ispartof><rights>2006 INIST-CNRS</rights><rights>[Copyright] © 2006 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-a0a05ff7ceb70d63e33de5df43a5b29b667b3aa7767cbd54bc0f324651d7b8443</citedby><cites>FETCH-LOGICAL-c387t-a0a05ff7ceb70d63e33de5df43a5b29b667b3aa7767cbd54bc0f324651d7b8443</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,3171,4010,27904,27905,27906</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17915605$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>VAN DEN ESHOF, Jasper</creatorcontrib><creatorcontrib>HOCHBRUCK, Marlis</creatorcontrib><title>Preconditioning Lanczos approximations to the matrix exponential</title><title>SIAM journal on scientific computing</title><description>The Lanczos method is an iterative procedure to compute an orthogonal basis for the Krylov subspace generated by a symmetric matrix $A$ and a starting vector $v$. An interesting application of this method is the computation of the matrix exponential $\exp(-\tau A)v$. This vector plays an important role in the solution of parabolic equations where $A$ results from some form of discretization of an elliptic operator. In the present paper we will argue that for these applications the convergence behavior of this method can be unsatisfactory. We will propose a modified method that resolves this by a simple preconditioned transformation at the cost of an inner-outer iteration. A priori error bounds are presented that are independent of the norm of $A$. This shows that the worst case convergence speed is independent of the mesh width in the spatial discretization of the elliptic operator. We discuss, furthermore, a posteriori error estimation and the tuning of the coupling between the inner and outer iteration. We conclude with several numerical experiments with the proposed method.</description><subject>Approximation</subject><subject>Eigenvalues</subject><subject>Exact sciences and technology</subject><subject>Experiments</subject><subject>Mathematics</subject><subject>Methods</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Numerical linear algebra</subject><subject>Ordinary differential equations</subject><subject>Partial differential equations, boundary value problems</subject><subject>Polynomials</subject><subject>Sciences and techniques of general use</subject><issn>1064-8275</issn><issn>1095-7197</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpFkE1LAzEQhoMoWKsH_8EiePCwOtl8TPemiF9Q0IOelySbaEpN1mQL1V9vSoueZoZ55uN9CTmlcEkpwyvgIEFwSffIhEIraqQt7m9yyetZg-KQHOW8AKCSt82EXL8ka2Lo_ehj8OG9mqtgfmKu1DCkuPafatPI1Rir8cNWpUx-Xdn1EIMNo1fLY3Lg1DLbk12ckrf7u9fbx3r-_PB0ezOvDZvhWCtQIJxDYzVCL5llrLeid5wpoZtWS4maKYUo0ehecG3AsYZLQXvUM87ZlJxt95a3vlY2j90irlIoJ7u2oVRKRqFAF1vIpJhzsq4bUpGQvjsK3caf7s-fwp7vFqps1NKlItzn_wFsqSgo-wXUcWSY</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>VAN DEN ESHOF, Jasper</creator><creator>HOCHBRUCK, Marlis</creator><general>Society for Industrial and Applied Mathematics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>2006</creationdate><title>Preconditioning Lanczos approximations to the matrix exponential</title><author>VAN DEN ESHOF, Jasper ; HOCHBRUCK, Marlis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-a0a05ff7ceb70d63e33de5df43a5b29b667b3aa7767cbd54bc0f324651d7b8443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Approximation</topic><topic>Eigenvalues</topic><topic>Exact sciences and technology</topic><topic>Experiments</topic><topic>Mathematics</topic><topic>Methods</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Numerical linear algebra</topic><topic>Ordinary differential equations</topic><topic>Partial differential equations, boundary value problems</topic><topic>Polynomials</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>VAN DEN ESHOF, Jasper</creatorcontrib><creatorcontrib>HOCHBRUCK, Marlis</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on scientific computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>VAN DEN ESHOF, Jasper</au><au>HOCHBRUCK, Marlis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Preconditioning Lanczos approximations to the matrix exponential</atitle><jtitle>SIAM journal on scientific computing</jtitle><date>2006</date><risdate>2006</risdate><volume>27</volume><issue>4</issue><spage>1438</spage><epage>1457</epage><pages>1438-1457</pages><issn>1064-8275</issn><eissn>1095-7197</eissn><coden>SJOCE3</coden><abstract>The Lanczos method is an iterative procedure to compute an orthogonal basis for the Krylov subspace generated by a symmetric matrix $A$ and a starting vector $v$. An interesting application of this method is the computation of the matrix exponential $\exp(-\tau A)v$. This vector plays an important role in the solution of parabolic equations where $A$ results from some form of discretization of an elliptic operator. In the present paper we will argue that for these applications the convergence behavior of this method can be unsatisfactory. We will propose a modified method that resolves this by a simple preconditioned transformation at the cost of an inner-outer iteration. A priori error bounds are presented that are independent of the norm of $A$. This shows that the worst case convergence speed is independent of the mesh width in the spatial discretization of the elliptic operator. We discuss, furthermore, a posteriori error estimation and the tuning of the coupling between the inner and outer iteration. We conclude with several numerical experiments with the proposed method.</abstract><cop>Philadelphia, PA</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/040605461</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1064-8275 |
ispartof | SIAM journal on scientific computing, 2006, Vol.27 (4), p.1438-1457 |
issn | 1064-8275 1095-7197 |
language | eng |
recordid | cdi_proquest_journals_921166310 |
source | SIAM Journals Online |
subjects | Approximation Eigenvalues Exact sciences and technology Experiments Mathematics Methods Numerical analysis Numerical analysis. Scientific computation Numerical linear algebra Ordinary differential equations Partial differential equations, boundary value problems Polynomials Sciences and techniques of general use |
title | Preconditioning Lanczos approximations to the matrix exponential |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T12%3A38%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Preconditioning%20Lanczos%20approximations%20to%20the%20matrix%20exponential&rft.jtitle=SIAM%20journal%20on%20scientific%20computing&rft.au=VAN%20DEN%20ESHOF,%20Jasper&rft.date=2006&rft.volume=27&rft.issue=4&rft.spage=1438&rft.epage=1457&rft.pages=1438-1457&rft.issn=1064-8275&rft.eissn=1095-7197&rft.coden=SJOCE3&rft_id=info:doi/10.1137/040605461&rft_dat=%3Cproquest_cross%3E2584553031%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=921166310&rft_id=info:pmid/&rfr_iscdi=true |