A Framework for Discrete Integral Transformations II—The 2D Discrete Radon Transform

Although naturally at the heart of many fundamental physical computations, and potentially useful in many important image processing tasks, the Radon transform lacks a coherent discrete definition for two-dimensional (2D) discrete images which is algebraically exact, invertible, and rapidly computab...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on scientific computing 2008-01, Vol.30 (2), p.785-803
Hauptverfasser: Averbuch, A., Coifman, R. R., Donoho, D. L., Israeli, M., Shkolnisky, Y., Sedelnikov, I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 803
container_issue 2
container_start_page 785
container_title SIAM journal on scientific computing
container_volume 30
creator Averbuch, A.
Coifman, R. R.
Donoho, D. L.
Israeli, M.
Shkolnisky, Y.
Sedelnikov, I.
description Although naturally at the heart of many fundamental physical computations, and potentially useful in many important image processing tasks, the Radon transform lacks a coherent discrete definition for two-dimensional (2D) discrete images which is algebraically exact, invertible, and rapidly computable. We define a notion of 2D discrete Radon transforms for 2D discrete images, which is based on summation along lines of absolute slope less than 1. Values at nongrid locations are defined using trigonometric interpolation on a zero-padded grid. Our definition is shown to be geometrically faithful: the summation avoids wrap-around effects. Our proposal uses a special collection of lines in $\mathbb{R}^{2}$ for which the transform is rapidly computable and invertible. We describe a fast algorithm using $O(N\log{N})$ operations, where $N =n^{2}$ is the number of pixels in the image. The fast algorithm exploits a discrete projection-slice theorem, which associates the discrete Radon transform with the pseudopolar Fourier transform [A. Averbuch et al., SIAM J. Sci. Comput., 30 (2008), pp. 764-784]. Our definition for discrete images converges to a natural continuous counterpart with increasing refinement.
doi_str_mv 10.1137/060650301
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_921075912</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2584090971</sourcerecordid><originalsourceid>FETCH-LOGICAL-c256t-c86f83e04e14e87b7076126e610d3b9ae5369d2e62359a153b2ae7daf54fbaf93</originalsourceid><addsrcrecordid>eNpFkMFKAzEYhIMoWKsH3yB487CaP9kkm2NprS4UBKlel-zuH93a3dRki_TmQ_iEPoktFXuagfmYgSHkEtgNgNC3TDElmWBwRAbAjEw0GH288ypNMq7lKTmLccEYqNTwAXkZ0WmwLX768E6dD3TSxCpgjzTvenwNdknnwXZxG7W2b3wXaZ7_fH3P35DyyYF-srXvDug5OXF2GfHiT4fkeXo3Hz8ks8f7fDyaJRWXqk-qTLlMIEsRUsx0qZlWwBUqYLUojUUplKk5Ki6ksSBFyS3q2jqZutI6I4bkat-7Cv5jjbEvFn4duu1kYTgwLQ3wLXS9h6rgYwzoilVoWhs2BbBi91rx_5r4BfTfXng</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>921075912</pqid></control><display><type>article</type><title>A Framework for Discrete Integral Transformations II—The 2D Discrete Radon Transform</title><source>SIAM Journals Online</source><creator>Averbuch, A. ; Coifman, R. R. ; Donoho, D. L. ; Israeli, M. ; Shkolnisky, Y. ; Sedelnikov, I.</creator><creatorcontrib>Averbuch, A. ; Coifman, R. R. ; Donoho, D. L. ; Israeli, M. ; Shkolnisky, Y. ; Sedelnikov, I.</creatorcontrib><description>Although naturally at the heart of many fundamental physical computations, and potentially useful in many important image processing tasks, the Radon transform lacks a coherent discrete definition for two-dimensional (2D) discrete images which is algebraically exact, invertible, and rapidly computable. We define a notion of 2D discrete Radon transforms for 2D discrete images, which is based on summation along lines of absolute slope less than 1. Values at nongrid locations are defined using trigonometric interpolation on a zero-padded grid. Our definition is shown to be geometrically faithful: the summation avoids wrap-around effects. Our proposal uses a special collection of lines in $\mathbb{R}^{2}$ for which the transform is rapidly computable and invertible. We describe a fast algorithm using $O(N\log{N})$ operations, where $N =n^{2}$ is the number of pixels in the image. The fast algorithm exploits a discrete projection-slice theorem, which associates the discrete Radon transform with the pseudopolar Fourier transform [A. Averbuch et al., SIAM J. Sci. Comput., 30 (2008), pp. 764-784]. Our definition for discrete images converges to a natural continuous counterpart with increasing refinement.</description><identifier>ISSN: 1064-8275</identifier><identifier>EISSN: 1095-7197</identifier><identifier>DOI: 10.1137/060650301</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Algebra ; Algorithms ; Computer science ; Fourier transforms ; Nondestructive testing</subject><ispartof>SIAM journal on scientific computing, 2008-01, Vol.30 (2), p.785-803</ispartof><rights>[Copyright] © 2008 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c256t-c86f83e04e14e87b7076126e610d3b9ae5369d2e62359a153b2ae7daf54fbaf93</citedby><cites>FETCH-LOGICAL-c256t-c86f83e04e14e87b7076126e610d3b9ae5369d2e62359a153b2ae7daf54fbaf93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3182,27923,27924</link.rule.ids></links><search><creatorcontrib>Averbuch, A.</creatorcontrib><creatorcontrib>Coifman, R. R.</creatorcontrib><creatorcontrib>Donoho, D. L.</creatorcontrib><creatorcontrib>Israeli, M.</creatorcontrib><creatorcontrib>Shkolnisky, Y.</creatorcontrib><creatorcontrib>Sedelnikov, I.</creatorcontrib><title>A Framework for Discrete Integral Transformations II—The 2D Discrete Radon Transform</title><title>SIAM journal on scientific computing</title><description>Although naturally at the heart of many fundamental physical computations, and potentially useful in many important image processing tasks, the Radon transform lacks a coherent discrete definition for two-dimensional (2D) discrete images which is algebraically exact, invertible, and rapidly computable. We define a notion of 2D discrete Radon transforms for 2D discrete images, which is based on summation along lines of absolute slope less than 1. Values at nongrid locations are defined using trigonometric interpolation on a zero-padded grid. Our definition is shown to be geometrically faithful: the summation avoids wrap-around effects. Our proposal uses a special collection of lines in $\mathbb{R}^{2}$ for which the transform is rapidly computable and invertible. We describe a fast algorithm using $O(N\log{N})$ operations, where $N =n^{2}$ is the number of pixels in the image. The fast algorithm exploits a discrete projection-slice theorem, which associates the discrete Radon transform with the pseudopolar Fourier transform [A. Averbuch et al., SIAM J. Sci. Comput., 30 (2008), pp. 764-784]. Our definition for discrete images converges to a natural continuous counterpart with increasing refinement.</description><subject>Algebra</subject><subject>Algorithms</subject><subject>Computer science</subject><subject>Fourier transforms</subject><subject>Nondestructive testing</subject><issn>1064-8275</issn><issn>1095-7197</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpFkMFKAzEYhIMoWKsH3yB487CaP9kkm2NprS4UBKlel-zuH93a3dRki_TmQ_iEPoktFXuagfmYgSHkEtgNgNC3TDElmWBwRAbAjEw0GH288ypNMq7lKTmLccEYqNTwAXkZ0WmwLX768E6dD3TSxCpgjzTvenwNdknnwXZxG7W2b3wXaZ7_fH3P35DyyYF-srXvDug5OXF2GfHiT4fkeXo3Hz8ks8f7fDyaJRWXqk-qTLlMIEsRUsx0qZlWwBUqYLUojUUplKk5Ki6ksSBFyS3q2jqZutI6I4bkat-7Cv5jjbEvFn4duu1kYTgwLQ3wLXS9h6rgYwzoilVoWhs2BbBi91rx_5r4BfTfXng</recordid><startdate>20080101</startdate><enddate>20080101</enddate><creator>Averbuch, A.</creator><creator>Coifman, R. R.</creator><creator>Donoho, D. L.</creator><creator>Israeli, M.</creator><creator>Shkolnisky, Y.</creator><creator>Sedelnikov, I.</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>20080101</creationdate><title>A Framework for Discrete Integral Transformations II—The 2D Discrete Radon Transform</title><author>Averbuch, A. ; Coifman, R. R. ; Donoho, D. L. ; Israeli, M. ; Shkolnisky, Y. ; Sedelnikov, I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c256t-c86f83e04e14e87b7076126e610d3b9ae5369d2e62359a153b2ae7daf54fbaf93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Algebra</topic><topic>Algorithms</topic><topic>Computer science</topic><topic>Fourier transforms</topic><topic>Nondestructive testing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Averbuch, A.</creatorcontrib><creatorcontrib>Coifman, R. R.</creatorcontrib><creatorcontrib>Donoho, D. L.</creatorcontrib><creatorcontrib>Israeli, M.</creatorcontrib><creatorcontrib>Shkolnisky, Y.</creatorcontrib><creatorcontrib>Sedelnikov, I.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on scientific computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Averbuch, A.</au><au>Coifman, R. R.</au><au>Donoho, D. L.</au><au>Israeli, M.</au><au>Shkolnisky, Y.</au><au>Sedelnikov, I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Framework for Discrete Integral Transformations II—The 2D Discrete Radon Transform</atitle><jtitle>SIAM journal on scientific computing</jtitle><date>2008-01-01</date><risdate>2008</risdate><volume>30</volume><issue>2</issue><spage>785</spage><epage>803</epage><pages>785-803</pages><issn>1064-8275</issn><eissn>1095-7197</eissn><abstract>Although naturally at the heart of many fundamental physical computations, and potentially useful in many important image processing tasks, the Radon transform lacks a coherent discrete definition for two-dimensional (2D) discrete images which is algebraically exact, invertible, and rapidly computable. We define a notion of 2D discrete Radon transforms for 2D discrete images, which is based on summation along lines of absolute slope less than 1. Values at nongrid locations are defined using trigonometric interpolation on a zero-padded grid. Our definition is shown to be geometrically faithful: the summation avoids wrap-around effects. Our proposal uses a special collection of lines in $\mathbb{R}^{2}$ for which the transform is rapidly computable and invertible. We describe a fast algorithm using $O(N\log{N})$ operations, where $N =n^{2}$ is the number of pixels in the image. The fast algorithm exploits a discrete projection-slice theorem, which associates the discrete Radon transform with the pseudopolar Fourier transform [A. Averbuch et al., SIAM J. Sci. Comput., 30 (2008), pp. 764-784]. Our definition for discrete images converges to a natural continuous counterpart with increasing refinement.</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/060650301</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1064-8275
ispartof SIAM journal on scientific computing, 2008-01, Vol.30 (2), p.785-803
issn 1064-8275
1095-7197
language eng
recordid cdi_proquest_journals_921075912
source SIAM Journals Online
subjects Algebra
Algorithms
Computer science
Fourier transforms
Nondestructive testing
title A Framework for Discrete Integral Transformations II—The 2D Discrete Radon Transform
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T01%3A53%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Framework%20for%20Discrete%20Integral%20Transformations%20II%E2%80%94The%202D%20Discrete%20Radon%20Transform&rft.jtitle=SIAM%20journal%20on%20scientific%20computing&rft.au=Averbuch,%20A.&rft.date=2008-01-01&rft.volume=30&rft.issue=2&rft.spage=785&rft.epage=803&rft.pages=785-803&rft.issn=1064-8275&rft.eissn=1095-7197&rft_id=info:doi/10.1137/060650301&rft_dat=%3Cproquest_cross%3E2584090971%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=921075912&rft_id=info:pmid/&rfr_iscdi=true