Iterated Hard Shrinkage for Minimization Problems with Sparsity Constraints
A new iterative algorithm for the solution of minimization problems in infinite-dimensional Hilbert spaces which involve sparsity constraints in form of $\ell^{p}$-penalties is proposed. In contrast to the well-known algorithm considered by Daubechies, Defrise, and De Mol, it uses hard instead of so...
Gespeichert in:
Veröffentlicht in: | SIAM journal on scientific computing 2008-01, Vol.30 (2), p.657-683 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 683 |
---|---|
container_issue | 2 |
container_start_page | 657 |
container_title | SIAM journal on scientific computing |
container_volume | 30 |
creator | Bredies, Kristian Lorenz, Dirk A. |
description | A new iterative algorithm for the solution of minimization problems in infinite-dimensional Hilbert spaces which involve sparsity constraints in form of $\ell^{p}$-penalties is proposed. In contrast to the well-known algorithm considered by Daubechies, Defrise, and De Mol, it uses hard instead of soft shrinkage. It is shown that the hard shrinkage algorithm is a special case of the generalized conditional gradient method. Convergence properties of the generalized conditional gradient method with quadratic discrepancy term are analyzed. This leads to strong convergence of the iterates with convergence rates $\mathcal{O}(n^{-1/2})$ and $\mathcal{O}(\lambda^n)$ for $p=1$ and $1 < p \leq 2$, respectively. Numerical experiments on image deblurring, backwards heat conduction, and inverse integration are given. |
doi_str_mv | 10.1137/060663556 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_921075904</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2584090921</sourcerecordid><originalsourceid>FETCH-LOGICAL-c256t-e194b8602066847cc252e22ab4fc95ccdeb8a9a5e14e812daba450a78833df9e3</originalsourceid><addsrcrecordid>eNo9UF9LwzAcDKLgnD74DYJvPlSTNH8fpagbThSmz-XXNnWZa1OTDJmf3o6JT3ccx91xCF1SckNprm6JJFLmQsgjNKHEiExRo473XPJMMyVO0VmMa0Ko5IZN0NM82QDJNngGocHLVXD9J3xY3PqAn13vOvcDyfkevwZfbWwX8bdLK7wcIESXdrjwfUwBXJ_iOTppYRPtxR9O0fvD_VsxyxYvj_PibpHVTMiUWWp4pSVh41LNVT2qzDIGFW9rI-q6sZUGA8JSbjVlDVTABQGldZ43rbH5FF0dcofgv7Y2pnLtt6EfK0vDKFHCED6arg-mOvgYg23LIbgOwq6kpNxfVf5flf8CzkdbPA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>921075904</pqid></control><display><type>article</type><title>Iterated Hard Shrinkage for Minimization Problems with Sparsity Constraints</title><source>SIAM Journals Online</source><creator>Bredies, Kristian ; Lorenz, Dirk A.</creator><creatorcontrib>Bredies, Kristian ; Lorenz, Dirk A.</creatorcontrib><description>A new iterative algorithm for the solution of minimization problems in infinite-dimensional Hilbert spaces which involve sparsity constraints in form of $\ell^{p}$-penalties is proposed. In contrast to the well-known algorithm considered by Daubechies, Defrise, and De Mol, it uses hard instead of soft shrinkage. It is shown that the hard shrinkage algorithm is a special case of the generalized conditional gradient method. Convergence properties of the generalized conditional gradient method with quadratic discrepancy term are analyzed. This leads to strong convergence of the iterates with convergence rates $\mathcal{O}(n^{-1/2})$ and $\mathcal{O}(\lambda^n)$ for $p=1$ and $1 < p \leq 2$, respectively. Numerical experiments on image deblurring, backwards heat conduction, and inverse integration are given.</description><identifier>ISSN: 1064-8275</identifier><identifier>EISSN: 1095-7197</identifier><identifier>DOI: 10.1137/060663556</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Algorithms ; Dictionaries ; Lagrange multiplier ; Sparsity</subject><ispartof>SIAM journal on scientific computing, 2008-01, Vol.30 (2), p.657-683</ispartof><rights>[Copyright] © 2008 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c256t-e194b8602066847cc252e22ab4fc95ccdeb8a9a5e14e812daba450a78833df9e3</citedby><cites>FETCH-LOGICAL-c256t-e194b8602066847cc252e22ab4fc95ccdeb8a9a5e14e812daba450a78833df9e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3171,27901,27902</link.rule.ids></links><search><creatorcontrib>Bredies, Kristian</creatorcontrib><creatorcontrib>Lorenz, Dirk A.</creatorcontrib><title>Iterated Hard Shrinkage for Minimization Problems with Sparsity Constraints</title><title>SIAM journal on scientific computing</title><description>A new iterative algorithm for the solution of minimization problems in infinite-dimensional Hilbert spaces which involve sparsity constraints in form of $\ell^{p}$-penalties is proposed. In contrast to the well-known algorithm considered by Daubechies, Defrise, and De Mol, it uses hard instead of soft shrinkage. It is shown that the hard shrinkage algorithm is a special case of the generalized conditional gradient method. Convergence properties of the generalized conditional gradient method with quadratic discrepancy term are analyzed. This leads to strong convergence of the iterates with convergence rates $\mathcal{O}(n^{-1/2})$ and $\mathcal{O}(\lambda^n)$ for $p=1$ and $1 < p \leq 2$, respectively. Numerical experiments on image deblurring, backwards heat conduction, and inverse integration are given.</description><subject>Algorithms</subject><subject>Dictionaries</subject><subject>Lagrange multiplier</subject><subject>Sparsity</subject><issn>1064-8275</issn><issn>1095-7197</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNo9UF9LwzAcDKLgnD74DYJvPlSTNH8fpagbThSmz-XXNnWZa1OTDJmf3o6JT3ccx91xCF1SckNprm6JJFLmQsgjNKHEiExRo473XPJMMyVO0VmMa0Ko5IZN0NM82QDJNngGocHLVXD9J3xY3PqAn13vOvcDyfkevwZfbWwX8bdLK7wcIESXdrjwfUwBXJ_iOTppYRPtxR9O0fvD_VsxyxYvj_PibpHVTMiUWWp4pSVh41LNVT2qzDIGFW9rI-q6sZUGA8JSbjVlDVTABQGldZ43rbH5FF0dcofgv7Y2pnLtt6EfK0vDKFHCED6arg-mOvgYg23LIbgOwq6kpNxfVf5flf8CzkdbPA</recordid><startdate>20080101</startdate><enddate>20080101</enddate><creator>Bredies, Kristian</creator><creator>Lorenz, Dirk A.</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>20080101</creationdate><title>Iterated Hard Shrinkage for Minimization Problems with Sparsity Constraints</title><author>Bredies, Kristian ; Lorenz, Dirk A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c256t-e194b8602066847cc252e22ab4fc95ccdeb8a9a5e14e812daba450a78833df9e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Algorithms</topic><topic>Dictionaries</topic><topic>Lagrange multiplier</topic><topic>Sparsity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bredies, Kristian</creatorcontrib><creatorcontrib>Lorenz, Dirk A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on scientific computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bredies, Kristian</au><au>Lorenz, Dirk A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Iterated Hard Shrinkage for Minimization Problems with Sparsity Constraints</atitle><jtitle>SIAM journal on scientific computing</jtitle><date>2008-01-01</date><risdate>2008</risdate><volume>30</volume><issue>2</issue><spage>657</spage><epage>683</epage><pages>657-683</pages><issn>1064-8275</issn><eissn>1095-7197</eissn><abstract>A new iterative algorithm for the solution of minimization problems in infinite-dimensional Hilbert spaces which involve sparsity constraints in form of $\ell^{p}$-penalties is proposed. In contrast to the well-known algorithm considered by Daubechies, Defrise, and De Mol, it uses hard instead of soft shrinkage. It is shown that the hard shrinkage algorithm is a special case of the generalized conditional gradient method. Convergence properties of the generalized conditional gradient method with quadratic discrepancy term are analyzed. This leads to strong convergence of the iterates with convergence rates $\mathcal{O}(n^{-1/2})$ and $\mathcal{O}(\lambda^n)$ for $p=1$ and $1 < p \leq 2$, respectively. Numerical experiments on image deblurring, backwards heat conduction, and inverse integration are given.</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/060663556</doi><tpages>27</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1064-8275 |
ispartof | SIAM journal on scientific computing, 2008-01, Vol.30 (2), p.657-683 |
issn | 1064-8275 1095-7197 |
language | eng |
recordid | cdi_proquest_journals_921075904 |
source | SIAM Journals Online |
subjects | Algorithms Dictionaries Lagrange multiplier Sparsity |
title | Iterated Hard Shrinkage for Minimization Problems with Sparsity Constraints |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T05%3A31%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Iterated%20Hard%20Shrinkage%20for%20Minimization%20Problems%20with%20Sparsity%20Constraints&rft.jtitle=SIAM%20journal%20on%20scientific%20computing&rft.au=Bredies,%20Kristian&rft.date=2008-01-01&rft.volume=30&rft.issue=2&rft.spage=657&rft.epage=683&rft.pages=657-683&rft.issn=1064-8275&rft.eissn=1095-7197&rft_id=info:doi/10.1137/060663556&rft_dat=%3Cproquest_cross%3E2584090921%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=921075904&rft_id=info:pmid/&rfr_iscdi=true |