Improvement of Space-Invariant Image Deblurring by Preconditioned Landweber Iterations
The Landweber method is a simple and flexible iterative regularization algorithm, whose projected variant provides nonnegative image reconstructions. Since the method is usually very slow, we apply circulant preconditioners, exploiting the shift invariance of many deblurring problems, in order to ac...
Gespeichert in:
Veröffentlicht in: | SIAM journal on scientific computing 2008-01, Vol.30 (3), p.1430-1458 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1458 |
---|---|
container_issue | 3 |
container_start_page | 1430 |
container_title | SIAM journal on scientific computing |
container_volume | 30 |
creator | Brianzi, Paola Di Benedetto, Fabio Estatico, Claudio |
description | The Landweber method is a simple and flexible iterative regularization algorithm, whose projected variant provides nonnegative image reconstructions. Since the method is usually very slow, we apply circulant preconditioners, exploiting the shift invariance of many deblurring problems, in order to accelerate the convergence. This way reasonable reconstructions can be obtained within a few iterations; the method becomes competitive and more robust than other approaches that, although faster, sometimes lead to lower accuracy. Some theoretical analysis of convergence is given, together with numerical validations. |
doi_str_mv | 10.1137/050636024 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_921057753</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2584083011</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-65e2f59f76a0d02db3545c60bedb23f9695a2fece0ac6ad0f418c91cfb10de63</originalsourceid><addsrcrecordid>eNo9UEtLAzEYDKJgrR78B4s3D6tfkk3SHKW-FgoKFq9LHl_Klm62Jlul_94tFU8zDMMMM4RcU7ijlKt7ECC5BFadkAkFLUpFtTo9cFmVM6bEObnIeQ1AZaXZhHzW3Tb139hhHIo-FB9b47Cs47dJrRmlujMrLB7RbnYptXFV2H3xntD10bdD20f0xcJE_4MWU1EPmMxBzZfkLJhNxqs_nJLl89Ny_lou3l7q-cOidEzToZQCWRA6KGnAA_OWi0o4CRa9ZTxoqYVhAR2CcdJ4CBWdOU1dsBQ8Sj4lN8fYccPXDvPQrPtdimNjoxkFoZTgo-n2aHKpzzlhaLap7UzaNxSaw2nN_2n8F0fUX2g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>921057753</pqid></control><display><type>article</type><title>Improvement of Space-Invariant Image Deblurring by Preconditioned Landweber Iterations</title><source>SIAM Journals Online</source><creator>Brianzi, Paola ; Di Benedetto, Fabio ; Estatico, Claudio</creator><creatorcontrib>Brianzi, Paola ; Di Benedetto, Fabio ; Estatico, Claudio</creatorcontrib><description>The Landweber method is a simple and flexible iterative regularization algorithm, whose projected variant provides nonnegative image reconstructions. Since the method is usually very slow, we apply circulant preconditioners, exploiting the shift invariance of many deblurring problems, in order to accelerate the convergence. This way reasonable reconstructions can be obtained within a few iterations; the method becomes competitive and more robust than other approaches that, although faster, sometimes lead to lower accuracy. Some theoretical analysis of convergence is given, together with numerical validations.</description><identifier>ISSN: 1064-8275</identifier><identifier>EISSN: 1095-7197</identifier><identifier>DOI: 10.1137/050636024</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Algorithms ; Approximation ; Boundary conditions ; Regularization methods</subject><ispartof>SIAM journal on scientific computing, 2008-01, Vol.30 (3), p.1430-1458</ispartof><rights>[Copyright] © 2008 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-65e2f59f76a0d02db3545c60bedb23f9695a2fece0ac6ad0f418c91cfb10de63</citedby><cites>FETCH-LOGICAL-c291t-65e2f59f76a0d02db3545c60bedb23f9695a2fece0ac6ad0f418c91cfb10de63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3184,27924,27925</link.rule.ids></links><search><creatorcontrib>Brianzi, Paola</creatorcontrib><creatorcontrib>Di Benedetto, Fabio</creatorcontrib><creatorcontrib>Estatico, Claudio</creatorcontrib><title>Improvement of Space-Invariant Image Deblurring by Preconditioned Landweber Iterations</title><title>SIAM journal on scientific computing</title><description>The Landweber method is a simple and flexible iterative regularization algorithm, whose projected variant provides nonnegative image reconstructions. Since the method is usually very slow, we apply circulant preconditioners, exploiting the shift invariance of many deblurring problems, in order to accelerate the convergence. This way reasonable reconstructions can be obtained within a few iterations; the method becomes competitive and more robust than other approaches that, although faster, sometimes lead to lower accuracy. Some theoretical analysis of convergence is given, together with numerical validations.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Boundary conditions</subject><subject>Regularization methods</subject><issn>1064-8275</issn><issn>1095-7197</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNo9UEtLAzEYDKJgrR78B4s3D6tfkk3SHKW-FgoKFq9LHl_Klm62Jlul_94tFU8zDMMMM4RcU7ijlKt7ECC5BFadkAkFLUpFtTo9cFmVM6bEObnIeQ1AZaXZhHzW3Tb139hhHIo-FB9b47Cs47dJrRmlujMrLB7RbnYptXFV2H3xntD10bdD20f0xcJE_4MWU1EPmMxBzZfkLJhNxqs_nJLl89Ny_lou3l7q-cOidEzToZQCWRA6KGnAA_OWi0o4CRa9ZTxoqYVhAR2CcdJ4CBWdOU1dsBQ8Sj4lN8fYccPXDvPQrPtdimNjoxkFoZTgo-n2aHKpzzlhaLap7UzaNxSaw2nN_2n8F0fUX2g</recordid><startdate>20080101</startdate><enddate>20080101</enddate><creator>Brianzi, Paola</creator><creator>Di Benedetto, Fabio</creator><creator>Estatico, Claudio</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>20080101</creationdate><title>Improvement of Space-Invariant Image Deblurring by Preconditioned Landweber Iterations</title><author>Brianzi, Paola ; Di Benedetto, Fabio ; Estatico, Claudio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-65e2f59f76a0d02db3545c60bedb23f9695a2fece0ac6ad0f418c91cfb10de63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Boundary conditions</topic><topic>Regularization methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brianzi, Paola</creatorcontrib><creatorcontrib>Di Benedetto, Fabio</creatorcontrib><creatorcontrib>Estatico, Claudio</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on scientific computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brianzi, Paola</au><au>Di Benedetto, Fabio</au><au>Estatico, Claudio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improvement of Space-Invariant Image Deblurring by Preconditioned Landweber Iterations</atitle><jtitle>SIAM journal on scientific computing</jtitle><date>2008-01-01</date><risdate>2008</risdate><volume>30</volume><issue>3</issue><spage>1430</spage><epage>1458</epage><pages>1430-1458</pages><issn>1064-8275</issn><eissn>1095-7197</eissn><abstract>The Landweber method is a simple and flexible iterative regularization algorithm, whose projected variant provides nonnegative image reconstructions. Since the method is usually very slow, we apply circulant preconditioners, exploiting the shift invariance of many deblurring problems, in order to accelerate the convergence. This way reasonable reconstructions can be obtained within a few iterations; the method becomes competitive and more robust than other approaches that, although faster, sometimes lead to lower accuracy. Some theoretical analysis of convergence is given, together with numerical validations.</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/050636024</doi><tpages>29</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1064-8275 |
ispartof | SIAM journal on scientific computing, 2008-01, Vol.30 (3), p.1430-1458 |
issn | 1064-8275 1095-7197 |
language | eng |
recordid | cdi_proquest_journals_921057753 |
source | SIAM Journals Online |
subjects | Algorithms Approximation Boundary conditions Regularization methods |
title | Improvement of Space-Invariant Image Deblurring by Preconditioned Landweber Iterations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T07%3A22%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improvement%20of%20Space-Invariant%20Image%20Deblurring%20by%20Preconditioned%20Landweber%20Iterations&rft.jtitle=SIAM%20journal%20on%20scientific%20computing&rft.au=Brianzi,%20Paola&rft.date=2008-01-01&rft.volume=30&rft.issue=3&rft.spage=1430&rft.epage=1458&rft.pages=1430-1458&rft.issn=1064-8275&rft.eissn=1095-7197&rft_id=info:doi/10.1137/050636024&rft_dat=%3Cproquest_cross%3E2584083011%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=921057753&rft_id=info:pmid/&rfr_iscdi=true |