Finite difference solutions for internal waves in enclosures
Finite difference approximations to the set of partial differential equations governing internal waves are investigated. Analytical solutions describing waves in an enclosure in two and three dimensions are obtained. The schemes considered are second order accurate in space and include first order e...
Gespeichert in:
Veröffentlicht in: | SIAM journal on scientific and statistical computing 1984-12, Vol.5 (4), p.958-977 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 977 |
---|---|
container_issue | 4 |
container_start_page | 958 |
container_title | SIAM journal on scientific and statistical computing |
container_volume | 5 |
creator | BAUM, H. R REHM, R. G |
description | Finite difference approximations to the set of partial differential equations governing internal waves are investigated. Analytical solutions describing waves in an enclosure in two and three dimensions are obtained. The schemes considered are second order accurate in space and include first order explicit and second order time differencing. The solutions are used to investigate the temporal stability and long term accuracy of all schemes. The mode frequencies and wave shapes obtained from each difference scheme are compared with the solutions both to the corresponding partial differential equations and to equations obtained by discretizing in space only. The solutions have been used by the authors to help develop a finite difference code designed to compute nonlinear buoyancy driven flows of the type that arise in enclosure fires. |
doi_str_mv | 10.1137/0905066 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_921001559</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2583561371</sourcerecordid><originalsourceid>FETCH-LOGICAL-c211t-7ac3884860a9b01c8bb79ba3f6b4dc6e3663d22cdb060f2899fa02208c1c2b853</originalsourceid><addsrcrecordid>eNo90EFLxDAQBeAgCq6r-BeKCJ6qM0mTJuBFxFVhwYueS5ImkKW2a6ZV_Pd22cXTMPDxeDzGLhFuEUV9BwYkKHXEFhyVLkWF9TFbABpVSg7VKTsj2gAIlKZasPtV6tMYijbFGHLofSho6KYxDT0VcchF6seQe9sVP_Y70PwWM-oGmnKgc3YSbUfh4nCX7GP19P74Uq7fnl8fH9al54hjWVsvtK60AmscoNfO1cZZEZWrWq-CUEq0nPvWgYLItTHRAuegPXrutBRLdrXP3ebhawo0Npth2pWixnAEQCnNjG72yOeBKIfYbHP6tPm3QWh2yzSHZWZ5fYiz5G0Xs-19on9uQGmlpPgDUI1g-A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>921001559</pqid></control><display><type>article</type><title>Finite difference solutions for internal waves in enclosures</title><source>SIAM Journals Online</source><creator>BAUM, H. R ; REHM, R. G</creator><creatorcontrib>BAUM, H. R ; REHM, R. G</creatorcontrib><description>Finite difference approximations to the set of partial differential equations governing internal waves are investigated. Analytical solutions describing waves in an enclosure in two and three dimensions are obtained. The schemes considered are second order accurate in space and include first order explicit and second order time differencing. The solutions are used to investigate the temporal stability and long term accuracy of all schemes. The mode frequencies and wave shapes obtained from each difference scheme are compared with the solutions both to the corresponding partial differential equations and to equations obtained by discretizing in space only. The solutions have been used by the authors to help develop a finite difference code designed to compute nonlinear buoyancy driven flows of the type that arise in enclosure fires.</description><identifier>ISSN: 0196-5204</identifier><identifier>ISSN: 1064-8275</identifier><identifier>EISSN: 2168-3417</identifier><identifier>EISSN: 1095-7197</identifier><identifier>DOI: 10.1137/0905066</identifier><identifier>CODEN: SIJCD4</identifier><language>eng</language><publisher>Philadelphia, PA: Society for Industrial and Applied Mathematics</publisher><subject>Accuracy ; Approximation ; Boundary conditions ; Eigenvalues ; Exact sciences and technology ; Mathematics ; Numerical analysis ; Numerical analysis. Scientific computation ; Partial differential equations ; Partial differential equations, boundary value problems ; Sciences and techniques of general use ; Velocity</subject><ispartof>SIAM journal on scientific and statistical computing, 1984-12, Vol.5 (4), p.958-977</ispartof><rights>1985 INIST-CNRS</rights><rights>[Copyright] © 1984 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c211t-7ac3884860a9b01c8bb79ba3f6b4dc6e3663d22cdb060f2899fa02208c1c2b853</citedby><cites>FETCH-LOGICAL-c211t-7ac3884860a9b01c8bb79ba3f6b4dc6e3663d22cdb060f2899fa02208c1c2b853</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=9068665$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>BAUM, H. R</creatorcontrib><creatorcontrib>REHM, R. G</creatorcontrib><title>Finite difference solutions for internal waves in enclosures</title><title>SIAM journal on scientific and statistical computing</title><description>Finite difference approximations to the set of partial differential equations governing internal waves are investigated. Analytical solutions describing waves in an enclosure in two and three dimensions are obtained. The schemes considered are second order accurate in space and include first order explicit and second order time differencing. The solutions are used to investigate the temporal stability and long term accuracy of all schemes. The mode frequencies and wave shapes obtained from each difference scheme are compared with the solutions both to the corresponding partial differential equations and to equations obtained by discretizing in space only. The solutions have been used by the authors to help develop a finite difference code designed to compute nonlinear buoyancy driven flows of the type that arise in enclosure fires.</description><subject>Accuracy</subject><subject>Approximation</subject><subject>Boundary conditions</subject><subject>Eigenvalues</subject><subject>Exact sciences and technology</subject><subject>Mathematics</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Partial differential equations</subject><subject>Partial differential equations, boundary value problems</subject><subject>Sciences and techniques of general use</subject><subject>Velocity</subject><issn>0196-5204</issn><issn>1064-8275</issn><issn>2168-3417</issn><issn>1095-7197</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1984</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNo90EFLxDAQBeAgCq6r-BeKCJ6qM0mTJuBFxFVhwYueS5ImkKW2a6ZV_Pd22cXTMPDxeDzGLhFuEUV9BwYkKHXEFhyVLkWF9TFbABpVSg7VKTsj2gAIlKZasPtV6tMYijbFGHLofSho6KYxDT0VcchF6seQe9sVP_Y70PwWM-oGmnKgc3YSbUfh4nCX7GP19P74Uq7fnl8fH9al54hjWVsvtK60AmscoNfO1cZZEZWrWq-CUEq0nPvWgYLItTHRAuegPXrutBRLdrXP3ebhawo0Npth2pWixnAEQCnNjG72yOeBKIfYbHP6tPm3QWh2yzSHZWZ5fYiz5G0Xs-19on9uQGmlpPgDUI1g-A</recordid><startdate>19841201</startdate><enddate>19841201</enddate><creator>BAUM, H. R</creator><creator>REHM, R. G</creator><general>Society for Industrial and Applied Mathematics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>19841201</creationdate><title>Finite difference solutions for internal waves in enclosures</title><author>BAUM, H. R ; REHM, R. G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c211t-7ac3884860a9b01c8bb79ba3f6b4dc6e3663d22cdb060f2899fa02208c1c2b853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1984</creationdate><topic>Accuracy</topic><topic>Approximation</topic><topic>Boundary conditions</topic><topic>Eigenvalues</topic><topic>Exact sciences and technology</topic><topic>Mathematics</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Partial differential equations</topic><topic>Partial differential equations, boundary value problems</topic><topic>Sciences and techniques of general use</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>BAUM, H. R</creatorcontrib><creatorcontrib>REHM, R. G</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on scientific and statistical computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>BAUM, H. R</au><au>REHM, R. G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finite difference solutions for internal waves in enclosures</atitle><jtitle>SIAM journal on scientific and statistical computing</jtitle><date>1984-12-01</date><risdate>1984</risdate><volume>5</volume><issue>4</issue><spage>958</spage><epage>977</epage><pages>958-977</pages><issn>0196-5204</issn><issn>1064-8275</issn><eissn>2168-3417</eissn><eissn>1095-7197</eissn><coden>SIJCD4</coden><abstract>Finite difference approximations to the set of partial differential equations governing internal waves are investigated. Analytical solutions describing waves in an enclosure in two and three dimensions are obtained. The schemes considered are second order accurate in space and include first order explicit and second order time differencing. The solutions are used to investigate the temporal stability and long term accuracy of all schemes. The mode frequencies and wave shapes obtained from each difference scheme are compared with the solutions both to the corresponding partial differential equations and to equations obtained by discretizing in space only. The solutions have been used by the authors to help develop a finite difference code designed to compute nonlinear buoyancy driven flows of the type that arise in enclosure fires.</abstract><cop>Philadelphia, PA</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/0905066</doi><tpages>20</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0196-5204 |
ispartof | SIAM journal on scientific and statistical computing, 1984-12, Vol.5 (4), p.958-977 |
issn | 0196-5204 1064-8275 2168-3417 1095-7197 |
language | eng |
recordid | cdi_proquest_journals_921001559 |
source | SIAM Journals Online |
subjects | Accuracy Approximation Boundary conditions Eigenvalues Exact sciences and technology Mathematics Numerical analysis Numerical analysis. Scientific computation Partial differential equations Partial differential equations, boundary value problems Sciences and techniques of general use Velocity |
title | Finite difference solutions for internal waves in enclosures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T03%3A06%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finite%20difference%20solutions%20for%20internal%20waves%20in%20enclosures&rft.jtitle=SIAM%20journal%20on%20scientific%20and%20statistical%20computing&rft.au=BAUM,%20H.%20R&rft.date=1984-12-01&rft.volume=5&rft.issue=4&rft.spage=958&rft.epage=977&rft.pages=958-977&rft.issn=0196-5204&rft.eissn=2168-3417&rft.coden=SIJCD4&rft_id=info:doi/10.1137/0905066&rft_dat=%3Cproquest_cross%3E2583561371%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=921001559&rft_id=info:pmid/&rfr_iscdi=true |