On the Solution of Large Quadratic Programming Problems with Bound Constraints

An algorithm is proposed that uses the conjugate gradient method to explore the face of the feasible region defined by the current iterate, and the gradient projection method to move to a different face. It is proved that for strictly convex problems the algorithm converges to the solution, and that...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on optimization 1991-02, Vol.1 (1), p.93-113
Hauptverfasser: Moré, Jorge J., Toraldo, Gerardo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 113
container_issue 1
container_start_page 93
container_title SIAM journal on optimization
container_volume 1
creator Moré, Jorge J.
Toraldo, Gerardo
description An algorithm is proposed that uses the conjugate gradient method to explore the face of the feasible region defined by the current iterate, and the gradient projection method to move to a different face. It is proved that for strictly convex problems the algorithm converges to the solution, and that if the solution is nondegenerate, then the algorithm terminates at the solution in a finite number of steps. Numerical results are presented for the obstacle problem, the elastic-plastic torsion problem, and the journal bearing problems. On a selection of these problems with dimensions ranging from 5000 to 15,000, the algorithm determines the solution in fewer than 15 iterations, and with a small number of function-gradient evaluations and Hessian-vector products per iteration.
doi_str_mv 10.1137/0801008
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_920840727</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2582911991</sourcerecordid><originalsourceid>FETCH-LOGICAL-c252t-9678c96c4ba5f6f184f67265759924b3b16d763c80471e9698a4ff98ead7a203</originalsourceid><addsrcrecordid>eNotkFtLwzAAhYMoOKf4F4IvPlVzay6POpwKxSnuvaRt0nW0yUxSxH9vy_Z0voePc-AAcIvRA8ZUPCKJMELyDCwwUnkmsFTnM-ck44SyS3AV4x5NhuJyAT42Dqadgd--H1PnHfQWFjq0Bn6Nugk6dTX8DL4Nehg6185c9WaI8LdLO_jsR9fAlXcxBd25FK_BhdV9NDenXILt-mW7esuKzev76qnIapKTlCkuZK14zSqdW26xZJYLwnORK0VYRSvMG8FpLRET2CiupGbWKml0IzRBdAnujrWH4H9GE1O592Nw02KpCJIMCSIm6f4o1cHHGIwtD6EbdPgrMSrnq8rTVfQfgH1Ziw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>920840727</pqid></control><display><type>article</type><title>On the Solution of Large Quadratic Programming Problems with Bound Constraints</title><source>SIAM Journals Online</source><creator>Moré, Jorge J. ; Toraldo, Gerardo</creator><creatorcontrib>Moré, Jorge J. ; Toraldo, Gerardo</creatorcontrib><description>An algorithm is proposed that uses the conjugate gradient method to explore the face of the feasible region defined by the current iterate, and the gradient projection method to move to a different face. It is proved that for strictly convex problems the algorithm converges to the solution, and that if the solution is nondegenerate, then the algorithm terminates at the solution in a finite number of steps. Numerical results are presented for the obstacle problem, the elastic-plastic torsion problem, and the journal bearing problems. On a selection of these problems with dimensions ranging from 5000 to 15,000, the algorithm determines the solution in fewer than 15 iterations, and with a small number of function-gradient evaluations and Hessian-vector products per iteration.</description><identifier>ISSN: 1052-6234</identifier><identifier>EISSN: 1095-7189</identifier><identifier>DOI: 10.1137/0801008</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Algorithms ; Disadvantages ; Journal bearings ; Quadratic programming</subject><ispartof>SIAM journal on optimization, 1991-02, Vol.1 (1), p.93-113</ispartof><rights>[Copyright] © 1991 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c252t-9678c96c4ba5f6f184f67265759924b3b16d763c80471e9698a4ff98ead7a203</citedby><cites>FETCH-LOGICAL-c252t-9678c96c4ba5f6f184f67265759924b3b16d763c80471e9698a4ff98ead7a203</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3184,27924,27925</link.rule.ids></links><search><creatorcontrib>Moré, Jorge J.</creatorcontrib><creatorcontrib>Toraldo, Gerardo</creatorcontrib><title>On the Solution of Large Quadratic Programming Problems with Bound Constraints</title><title>SIAM journal on optimization</title><description>An algorithm is proposed that uses the conjugate gradient method to explore the face of the feasible region defined by the current iterate, and the gradient projection method to move to a different face. It is proved that for strictly convex problems the algorithm converges to the solution, and that if the solution is nondegenerate, then the algorithm terminates at the solution in a finite number of steps. Numerical results are presented for the obstacle problem, the elastic-plastic torsion problem, and the journal bearing problems. On a selection of these problems with dimensions ranging from 5000 to 15,000, the algorithm determines the solution in fewer than 15 iterations, and with a small number of function-gradient evaluations and Hessian-vector products per iteration.</description><subject>Algorithms</subject><subject>Disadvantages</subject><subject>Journal bearings</subject><subject>Quadratic programming</subject><issn>1052-6234</issn><issn>1095-7189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1991</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNotkFtLwzAAhYMoOKf4F4IvPlVzay6POpwKxSnuvaRt0nW0yUxSxH9vy_Z0voePc-AAcIvRA8ZUPCKJMELyDCwwUnkmsFTnM-ck44SyS3AV4x5NhuJyAT42Dqadgd--H1PnHfQWFjq0Bn6Nugk6dTX8DL4Nehg6185c9WaI8LdLO_jsR9fAlXcxBd25FK_BhdV9NDenXILt-mW7esuKzev76qnIapKTlCkuZK14zSqdW26xZJYLwnORK0VYRSvMG8FpLRET2CiupGbWKml0IzRBdAnujrWH4H9GE1O592Nw02KpCJIMCSIm6f4o1cHHGIwtD6EbdPgrMSrnq8rTVfQfgH1Ziw</recordid><startdate>19910201</startdate><enddate>19910201</enddate><creator>Moré, Jorge J.</creator><creator>Toraldo, Gerardo</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>U9A</scope></search><sort><creationdate>19910201</creationdate><title>On the Solution of Large Quadratic Programming Problems with Bound Constraints</title><author>Moré, Jorge J. ; Toraldo, Gerardo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c252t-9678c96c4ba5f6f184f67265759924b3b16d763c80471e9698a4ff98ead7a203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1991</creationdate><topic>Algorithms</topic><topic>Disadvantages</topic><topic>Journal bearings</topic><topic>Quadratic programming</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moré, Jorge J.</creatorcontrib><creatorcontrib>Toraldo, Gerardo</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career &amp; Technical Education Database</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moré, Jorge J.</au><au>Toraldo, Gerardo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Solution of Large Quadratic Programming Problems with Bound Constraints</atitle><jtitle>SIAM journal on optimization</jtitle><date>1991-02-01</date><risdate>1991</risdate><volume>1</volume><issue>1</issue><spage>93</spage><epage>113</epage><pages>93-113</pages><issn>1052-6234</issn><eissn>1095-7189</eissn><abstract>An algorithm is proposed that uses the conjugate gradient method to explore the face of the feasible region defined by the current iterate, and the gradient projection method to move to a different face. It is proved that for strictly convex problems the algorithm converges to the solution, and that if the solution is nondegenerate, then the algorithm terminates at the solution in a finite number of steps. Numerical results are presented for the obstacle problem, the elastic-plastic torsion problem, and the journal bearing problems. On a selection of these problems with dimensions ranging from 5000 to 15,000, the algorithm determines the solution in fewer than 15 iterations, and with a small number of function-gradient evaluations and Hessian-vector products per iteration.</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/0801008</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1052-6234
ispartof SIAM journal on optimization, 1991-02, Vol.1 (1), p.93-113
issn 1052-6234
1095-7189
language eng
recordid cdi_proquest_journals_920840727
source SIAM Journals Online
subjects Algorithms
Disadvantages
Journal bearings
Quadratic programming
title On the Solution of Large Quadratic Programming Problems with Bound Constraints
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T18%3A59%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Solution%20of%20Large%20Quadratic%20Programming%20Problems%20with%20Bound%20Constraints&rft.jtitle=SIAM%20journal%20on%20optimization&rft.au=Mor%C3%A9,%20Jorge%20J.&rft.date=1991-02-01&rft.volume=1&rft.issue=1&rft.spage=93&rft.epage=113&rft.pages=93-113&rft.issn=1052-6234&rft.eissn=1095-7189&rft_id=info:doi/10.1137/0801008&rft_dat=%3Cproquest_cross%3E2582911991%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=920840727&rft_id=info:pmid/&rfr_iscdi=true