Line Search Filter Methods for Nonlinear Programming: Motivation and Global Convergence
Line search methods are proposed for nonlinear programming using Fletcher and Leyffer's filter method [Math. Program., 91 (2002), pp. 239--269], which replaces the traditional merit function. Their global convergence properties are analyzed. The presented framework is applied to active set sequ...
Gespeichert in:
Veröffentlicht in: | SIAM journal on optimization 2005-01, Vol.16 (1), p.1-31 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 31 |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | SIAM journal on optimization |
container_volume | 16 |
creator | Wächter, Andreas Biegler, Lorenz T. |
description | Line search methods are proposed for nonlinear programming using Fletcher and Leyffer's filter method [Math. Program., 91 (2002), pp. 239--269], which replaces the traditional merit function. Their global convergence properties are analyzed. The presented framework is applied to active set sequential quadratic programming (SQP) and barrier interior point algorithms. Under mild assumptions it is shown that every limit point of the sequence of iterates generated by the algorithm is feasible, and that there exists at least one limit point that is a stationary point for the problem under consideration. A new alternative filter approach employing the Lagrangian function instead of the objective function with identical global convergence properties is briefly discussed. |
doi_str_mv | 10.1137/S1052623403426556 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_920377234</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2581674491</sourcerecordid><originalsourceid>FETCH-LOGICAL-c320t-5ac01e6a006752ec3c7e3be9ec465b9e93e8da00136d7fdfcefed71f9432820d3</originalsourceid><addsrcrecordid>eNplkE9LAzEUxIMoWKsfwFvwvpo_m2TjTYpthVaFKh6XNHlpt2yTmmwLfnu31JunNzA_ZniD0C0l95Ry9bCgRDDJeEl4yaQQ8gwNKNGiULTS50ctWHH0L9FVzhtCSKVlNUBfsyYAXoBJdo3HTdtBwnPo1tFl7GPCrzG0PWESfk9xlcx224TVI57HrjmYrokBm-DwpI1L0-JRDAdIKwgWrtGFN22Gm787RJ_j54_RtJi9TV5GT7PCcka6QhhLKEhDiFSCgeVWAV-CBltKsdSgOVSudymXTnnnLXhwinpdclYx4vgQ3Z1ydyl-7yF39SbuU-gra80IV6p_uYfoCbIp5pzA17vUbE36qSmpj_PV_-bjv8nyYrY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>920377234</pqid></control><display><type>article</type><title>Line Search Filter Methods for Nonlinear Programming: Motivation and Global Convergence</title><source>SIAM Journals Online</source><source>Business Source Complete</source><creator>Wächter, Andreas ; Biegler, Lorenz T.</creator><creatorcontrib>Wächter, Andreas ; Biegler, Lorenz T.</creatorcontrib><description>Line search methods are proposed for nonlinear programming using Fletcher and Leyffer's filter method [Math. Program., 91 (2002), pp. 239--269], which replaces the traditional merit function. Their global convergence properties are analyzed. The presented framework is applied to active set sequential quadratic programming (SQP) and barrier interior point algorithms. Under mild assumptions it is shown that every limit point of the sequence of iterates generated by the algorithm is feasible, and that there exists at least one limit point that is a stationary point for the problem under consideration. A new alternative filter approach employing the Lagrangian function instead of the objective function with identical global convergence properties is briefly discussed.</description><identifier>ISSN: 1052-6234</identifier><identifier>EISSN: 1095-7189</identifier><identifier>DOI: 10.1137/S1052623403426556</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Algorithms ; Methods ; Motivation ; Optimization ; Quadratic programming</subject><ispartof>SIAM journal on optimization, 2005-01, Vol.16 (1), p.1-31</ispartof><rights>[Copyright] © 2005 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c320t-5ac01e6a006752ec3c7e3be9ec465b9e93e8da00136d7fdfcefed71f9432820d3</citedby><cites>FETCH-LOGICAL-c320t-5ac01e6a006752ec3c7e3be9ec465b9e93e8da00136d7fdfcefed71f9432820d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3184,27924,27925</link.rule.ids></links><search><creatorcontrib>Wächter, Andreas</creatorcontrib><creatorcontrib>Biegler, Lorenz T.</creatorcontrib><title>Line Search Filter Methods for Nonlinear Programming: Motivation and Global Convergence</title><title>SIAM journal on optimization</title><description>Line search methods are proposed for nonlinear programming using Fletcher and Leyffer's filter method [Math. Program., 91 (2002), pp. 239--269], which replaces the traditional merit function. Their global convergence properties are analyzed. The presented framework is applied to active set sequential quadratic programming (SQP) and barrier interior point algorithms. Under mild assumptions it is shown that every limit point of the sequence of iterates generated by the algorithm is feasible, and that there exists at least one limit point that is a stationary point for the problem under consideration. A new alternative filter approach employing the Lagrangian function instead of the objective function with identical global convergence properties is briefly discussed.</description><subject>Algorithms</subject><subject>Methods</subject><subject>Motivation</subject><subject>Optimization</subject><subject>Quadratic programming</subject><issn>1052-6234</issn><issn>1095-7189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNplkE9LAzEUxIMoWKsfwFvwvpo_m2TjTYpthVaFKh6XNHlpt2yTmmwLfnu31JunNzA_ZniD0C0l95Ry9bCgRDDJeEl4yaQQ8gwNKNGiULTS50ctWHH0L9FVzhtCSKVlNUBfsyYAXoBJdo3HTdtBwnPo1tFl7GPCrzG0PWESfk9xlcx224TVI57HrjmYrokBm-DwpI1L0-JRDAdIKwgWrtGFN22Gm787RJ_j54_RtJi9TV5GT7PCcka6QhhLKEhDiFSCgeVWAV-CBltKsdSgOVSudymXTnnnLXhwinpdclYx4vgQ3Z1ydyl-7yF39SbuU-gra80IV6p_uYfoCbIp5pzA17vUbE36qSmpj_PV_-bjv8nyYrY</recordid><startdate>20050101</startdate><enddate>20050101</enddate><creator>Wächter, Andreas</creator><creator>Biegler, Lorenz T.</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>U9A</scope></search><sort><creationdate>20050101</creationdate><title>Line Search Filter Methods for Nonlinear Programming: Motivation and Global Convergence</title><author>Wächter, Andreas ; Biegler, Lorenz T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c320t-5ac01e6a006752ec3c7e3be9ec465b9e93e8da00136d7fdfcefed71f9432820d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Algorithms</topic><topic>Methods</topic><topic>Motivation</topic><topic>Optimization</topic><topic>Quadratic programming</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wächter, Andreas</creatorcontrib><creatorcontrib>Biegler, Lorenz T.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career & Technical Education Database</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wächter, Andreas</au><au>Biegler, Lorenz T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Line Search Filter Methods for Nonlinear Programming: Motivation and Global Convergence</atitle><jtitle>SIAM journal on optimization</jtitle><date>2005-01-01</date><risdate>2005</risdate><volume>16</volume><issue>1</issue><spage>1</spage><epage>31</epage><pages>1-31</pages><issn>1052-6234</issn><eissn>1095-7189</eissn><abstract>Line search methods are proposed for nonlinear programming using Fletcher and Leyffer's filter method [Math. Program., 91 (2002), pp. 239--269], which replaces the traditional merit function. Their global convergence properties are analyzed. The presented framework is applied to active set sequential quadratic programming (SQP) and barrier interior point algorithms. Under mild assumptions it is shown that every limit point of the sequence of iterates generated by the algorithm is feasible, and that there exists at least one limit point that is a stationary point for the problem under consideration. A new alternative filter approach employing the Lagrangian function instead of the objective function with identical global convergence properties is briefly discussed.</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/S1052623403426556</doi><tpages>31</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1052-6234 |
ispartof | SIAM journal on optimization, 2005-01, Vol.16 (1), p.1-31 |
issn | 1052-6234 1095-7189 |
language | eng |
recordid | cdi_proquest_journals_920377234 |
source | SIAM Journals Online; Business Source Complete |
subjects | Algorithms Methods Motivation Optimization Quadratic programming |
title | Line Search Filter Methods for Nonlinear Programming: Motivation and Global Convergence |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T11%3A38%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Line%20Search%20Filter%20Methods%20for%20Nonlinear%20Programming:%20Motivation%20and%20Global%20Convergence&rft.jtitle=SIAM%20journal%20on%20optimization&rft.au=W%C3%A4chter,%20Andreas&rft.date=2005-01-01&rft.volume=16&rft.issue=1&rft.spage=1&rft.epage=31&rft.pages=1-31&rft.issn=1052-6234&rft.eissn=1095-7189&rft_id=info:doi/10.1137/S1052623403426556&rft_dat=%3Cproquest_cross%3E2581674491%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=920377234&rft_id=info:pmid/&rfr_iscdi=true |