On the Relationship between the Convergence Rates of Iterative and Continuous Processes

Considering iterative sequences that arise when approximate solutions $x_k$ to a numerical problem are updated by $x_{k+1} = x_k+v(x_k)$, where $v$ is a differentiable vector field, we derive necessary and sufficient conditions for such discrete processes to converge to a stationary point of $v$ at...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on optimization 2007-01, Vol.18 (1), p.52-64
Hauptverfasser: Hauser, Raphael, Nedić, Jelena
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 64
container_issue 1
container_start_page 52
container_title SIAM journal on optimization
container_volume 18
creator Hauser, Raphael
Nedić, Jelena
description Considering iterative sequences that arise when approximate solutions $x_k$ to a numerical problem are updated by $x_{k+1} = x_k+v(x_k)$, where $v$ is a differentiable vector field, we derive necessary and sufficient conditions for such discrete processes to converge to a stationary point of $v$ at different Q-rates in terms of a similar notion of fast convergence for the corresponding continuous processes.
doi_str_mv 10.1137/040620631
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_920335524</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2581409861</sourcerecordid><originalsourceid>FETCH-LOGICAL-c256t-342e9d870a8813f3d9f384e0d2cb97672e4959a9be67bcc923be23c26e37e4503</originalsourceid><addsrcrecordid>eNo90MtKAzEUBuAgCtbqwjcI7lyM5n5ZSvFSKFREcTlkMmfslJrUJFPx7Z1ScXUOnI__wI_QJSU3lHJ9SwRRjChOj9CEEisrTY093u-SVYpxcYrOcl4TQoxVZoLelwGXFeAX2LjSx5BX_RY3UL4BDodZDDtIHxD8iFyBjGOH5wXSyHeAXWj3pPRhiEPGzyl6yBnyOTrp3CbDxd-coreH-9fZU7VYPs5nd4vKM6lKxQUD2xpNnDGUd7y1HTcCSMt8Y7XSDISV1tkGlG68t4w3wLhnCrgGIQmfoqtD7jbFrwFyqddxSGF8WVtGOJeSiRFdH5BPMecEXb1N_adLPzUl9b62-r82_gtQD16M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>920335524</pqid></control><display><type>article</type><title>On the Relationship between the Convergence Rates of Iterative and Continuous Processes</title><source>SIAM Journals Online</source><source>EBSCOhost Business Source Complete</source><creator>Hauser, Raphael ; Nedić, Jelena</creator><creatorcontrib>Hauser, Raphael ; Nedić, Jelena</creatorcontrib><description>Considering iterative sequences that arise when approximate solutions $x_k$ to a numerical problem are updated by $x_{k+1} = x_k+v(x_k)$, where $v$ is a differentiable vector field, we derive necessary and sufficient conditions for such discrete processes to converge to a stationary point of $v$ at different Q-rates in terms of a similar notion of fast convergence for the corresponding continuous processes.</description><identifier>ISSN: 1052-6234</identifier><identifier>EISSN: 1095-7189</identifier><identifier>DOI: 10.1137/040620631</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Approximation ; Dynamical systems ; Optimization</subject><ispartof>SIAM journal on optimization, 2007-01, Vol.18 (1), p.52-64</ispartof><rights>[Copyright] © 2007 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c256t-342e9d870a8813f3d9f384e0d2cb97672e4959a9be67bcc923be23c26e37e4503</citedby><cites>FETCH-LOGICAL-c256t-342e9d870a8813f3d9f384e0d2cb97672e4959a9be67bcc923be23c26e37e4503</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,3185,27929,27930</link.rule.ids></links><search><creatorcontrib>Hauser, Raphael</creatorcontrib><creatorcontrib>Nedić, Jelena</creatorcontrib><title>On the Relationship between the Convergence Rates of Iterative and Continuous Processes</title><title>SIAM journal on optimization</title><description>Considering iterative sequences that arise when approximate solutions $x_k$ to a numerical problem are updated by $x_{k+1} = x_k+v(x_k)$, where $v$ is a differentiable vector field, we derive necessary and sufficient conditions for such discrete processes to converge to a stationary point of $v$ at different Q-rates in terms of a similar notion of fast convergence for the corresponding continuous processes.</description><subject>Approximation</subject><subject>Dynamical systems</subject><subject>Optimization</subject><issn>1052-6234</issn><issn>1095-7189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNo90MtKAzEUBuAgCtbqwjcI7lyM5n5ZSvFSKFREcTlkMmfslJrUJFPx7Z1ScXUOnI__wI_QJSU3lHJ9SwRRjChOj9CEEisrTY093u-SVYpxcYrOcl4TQoxVZoLelwGXFeAX2LjSx5BX_RY3UL4BDodZDDtIHxD8iFyBjGOH5wXSyHeAXWj3pPRhiEPGzyl6yBnyOTrp3CbDxd-coreH-9fZU7VYPs5nd4vKM6lKxQUD2xpNnDGUd7y1HTcCSMt8Y7XSDISV1tkGlG68t4w3wLhnCrgGIQmfoqtD7jbFrwFyqddxSGF8WVtGOJeSiRFdH5BPMecEXb1N_adLPzUl9b62-r82_gtQD16M</recordid><startdate>200701</startdate><enddate>200701</enddate><creator>Hauser, Raphael</creator><creator>Nedić, Jelena</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>U9A</scope></search><sort><creationdate>200701</creationdate><title>On the Relationship between the Convergence Rates of Iterative and Continuous Processes</title><author>Hauser, Raphael ; Nedić, Jelena</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c256t-342e9d870a8813f3d9f384e0d2cb97672e4959a9be67bcc923be23c26e37e4503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Approximation</topic><topic>Dynamical systems</topic><topic>Optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hauser, Raphael</creatorcontrib><creatorcontrib>Nedić, Jelena</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career &amp; Technical Education Database</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database (ProQuest)</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hauser, Raphael</au><au>Nedić, Jelena</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Relationship between the Convergence Rates of Iterative and Continuous Processes</atitle><jtitle>SIAM journal on optimization</jtitle><date>2007-01</date><risdate>2007</risdate><volume>18</volume><issue>1</issue><spage>52</spage><epage>64</epage><pages>52-64</pages><issn>1052-6234</issn><eissn>1095-7189</eissn><abstract>Considering iterative sequences that arise when approximate solutions $x_k$ to a numerical problem are updated by $x_{k+1} = x_k+v(x_k)$, where $v$ is a differentiable vector field, we derive necessary and sufficient conditions for such discrete processes to converge to a stationary point of $v$ at different Q-rates in terms of a similar notion of fast convergence for the corresponding continuous processes.</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/040620631</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1052-6234
ispartof SIAM journal on optimization, 2007-01, Vol.18 (1), p.52-64
issn 1052-6234
1095-7189
language eng
recordid cdi_proquest_journals_920335524
source SIAM Journals Online; EBSCOhost Business Source Complete
subjects Approximation
Dynamical systems
Optimization
title On the Relationship between the Convergence Rates of Iterative and Continuous Processes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T15%3A40%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Relationship%20between%20the%20Convergence%20Rates%20of%20Iterative%20and%20Continuous%20Processes&rft.jtitle=SIAM%20journal%20on%20optimization&rft.au=Hauser,%20Raphael&rft.date=2007-01&rft.volume=18&rft.issue=1&rft.spage=52&rft.epage=64&rft.pages=52-64&rft.issn=1052-6234&rft.eissn=1095-7189&rft_id=info:doi/10.1137/040620631&rft_dat=%3Cproquest_cross%3E2581409861%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=920335524&rft_id=info:pmid/&rfr_iscdi=true