On the Primal-Dual Steepest Descent Algorithm for Extended Linear-Quadratic Programming

The aim of this paper is two-fold. First, new variants are proposed for the primal-dual steepest descent algorithm as one in the family of primal-dual projected gradient algorithms developed by Zhu and Rockafellar [SIAM J. Optim., 3 (1993), pp. 751-783] for large-scale extended linear-quadratic prog...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on optimization 1995-02, Vol.5 (1), p.114-128
1. Verfasser: Zhu, Ciyou
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 128
container_issue 1
container_start_page 114
container_title SIAM journal on optimization
container_volume 5
creator Zhu, Ciyou
description The aim of this paper is two-fold. First, new variants are proposed for the primal-dual steepest descent algorithm as one in the family of primal-dual projected gradient algorithms developed by Zhu and Rockafellar [SIAM J. Optim., 3 (1993), pp. 751-783] for large-scale extended linear-quadratic programming. The variants include a second update scheme for the iterates, where the primal-dual feedback is arranged in a new pattern, as well as alternatives for the "perfect line search" in the original version of the reference. Second, new linear convergence results are proved for all these variants of the algorithm, including the original version as a special case, without the additional assumptions used by Zhu and Rockafellar. For the variants with the second update scheme, a much sharper estimation for the rate of convergence is obtained due to the new primal-dual feedback pattern.
doi_str_mv 10.1137/0805006
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_920153046</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2580230011</sourcerecordid><originalsourceid>FETCH-LOGICAL-c182t-a3f230cc2196553d4270cf2b9f0e17ad0dfebccb567f60c421a6f39d04a606a93</originalsourceid><addsrcrecordid>eNotUElLAzEYDaJgreJfCF48Rb8kk8zkWNq6QKGKischzdJOmc0kA_rvndKe3js83obQLYUHSnn-CAUIAHmGJhSUIDkt1PmBC0Yk49kluopxDwCFksUEfa9bnHYOv4Wq0TVZDLrGH8m53sWEFy4a1yY8q7ddqNKuwb4LePmbXGudxauqdTqQ90HboFNlRpNuG3TTVO32Gl14XUd3c8Ip-npafs5fyGr9_DqfrYihBUtEc884GMOokkJwm7EcjGcb5cHRXFuw3m2M2QiZewkmY1RLz5WFTEuQWvEpujv69qH7GcbS5b4bQjtGlooBFRwyOYrujyITuhiD82V_mBv-Sgrl4bTydBr_B9ePXc0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>920153046</pqid></control><display><type>article</type><title>On the Primal-Dual Steepest Descent Algorithm for Extended Linear-Quadratic Programming</title><source>SIAM Journals Online</source><creator>Zhu, Ciyou</creator><creatorcontrib>Zhu, Ciyou</creatorcontrib><description>The aim of this paper is two-fold. First, new variants are proposed for the primal-dual steepest descent algorithm as one in the family of primal-dual projected gradient algorithms developed by Zhu and Rockafellar [SIAM J. Optim., 3 (1993), pp. 751-783] for large-scale extended linear-quadratic programming. The variants include a second update scheme for the iterates, where the primal-dual feedback is arranged in a new pattern, as well as alternatives for the "perfect line search" in the original version of the reference. Second, new linear convergence results are proved for all these variants of the algorithm, including the original version as a special case, without the additional assumptions used by Zhu and Rockafellar. For the variants with the second update scheme, a much sharper estimation for the rate of convergence is obtained due to the new primal-dual feedback pattern.</description><identifier>ISSN: 1052-6234</identifier><identifier>EISSN: 1095-7189</identifier><identifier>DOI: 10.1137/0805006</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Algorithms ; Applied mathematics ; Optimization ; Quadratic programming ; Values</subject><ispartof>SIAM journal on optimization, 1995-02, Vol.5 (1), p.114-128</ispartof><rights>[Copyright] © 1995 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c182t-a3f230cc2196553d4270cf2b9f0e17ad0dfebccb567f60c421a6f39d04a606a93</citedby><cites>FETCH-LOGICAL-c182t-a3f230cc2196553d4270cf2b9f0e17ad0dfebccb567f60c421a6f39d04a606a93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3182,27923,27924</link.rule.ids></links><search><creatorcontrib>Zhu, Ciyou</creatorcontrib><title>On the Primal-Dual Steepest Descent Algorithm for Extended Linear-Quadratic Programming</title><title>SIAM journal on optimization</title><description>The aim of this paper is two-fold. First, new variants are proposed for the primal-dual steepest descent algorithm as one in the family of primal-dual projected gradient algorithms developed by Zhu and Rockafellar [SIAM J. Optim., 3 (1993), pp. 751-783] for large-scale extended linear-quadratic programming. The variants include a second update scheme for the iterates, where the primal-dual feedback is arranged in a new pattern, as well as alternatives for the "perfect line search" in the original version of the reference. Second, new linear convergence results are proved for all these variants of the algorithm, including the original version as a special case, without the additional assumptions used by Zhu and Rockafellar. For the variants with the second update scheme, a much sharper estimation for the rate of convergence is obtained due to the new primal-dual feedback pattern.</description><subject>Algorithms</subject><subject>Applied mathematics</subject><subject>Optimization</subject><subject>Quadratic programming</subject><subject>Values</subject><issn>1052-6234</issn><issn>1095-7189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNotUElLAzEYDaJgreJfCF48Rb8kk8zkWNq6QKGKischzdJOmc0kA_rvndKe3js83obQLYUHSnn-CAUIAHmGJhSUIDkt1PmBC0Yk49kluopxDwCFksUEfa9bnHYOv4Wq0TVZDLrGH8m53sWEFy4a1yY8q7ddqNKuwb4LePmbXGudxauqdTqQ90HboFNlRpNuG3TTVO32Gl14XUd3c8Ip-npafs5fyGr9_DqfrYihBUtEc884GMOokkJwm7EcjGcb5cHRXFuw3m2M2QiZewkmY1RLz5WFTEuQWvEpujv69qH7GcbS5b4bQjtGlooBFRwyOYrujyITuhiD82V_mBv-Sgrl4bTydBr_B9ePXc0</recordid><startdate>199502</startdate><enddate>199502</enddate><creator>Zhu, Ciyou</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>U9A</scope></search><sort><creationdate>199502</creationdate><title>On the Primal-Dual Steepest Descent Algorithm for Extended Linear-Quadratic Programming</title><author>Zhu, Ciyou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c182t-a3f230cc2196553d4270cf2b9f0e17ad0dfebccb567f60c421a6f39d04a606a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>Algorithms</topic><topic>Applied mathematics</topic><topic>Optimization</topic><topic>Quadratic programming</topic><topic>Values</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Ciyou</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career &amp; Technical Education Database</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Ciyou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Primal-Dual Steepest Descent Algorithm for Extended Linear-Quadratic Programming</atitle><jtitle>SIAM journal on optimization</jtitle><date>1995-02</date><risdate>1995</risdate><volume>5</volume><issue>1</issue><spage>114</spage><epage>128</epage><pages>114-128</pages><issn>1052-6234</issn><eissn>1095-7189</eissn><abstract>The aim of this paper is two-fold. First, new variants are proposed for the primal-dual steepest descent algorithm as one in the family of primal-dual projected gradient algorithms developed by Zhu and Rockafellar [SIAM J. Optim., 3 (1993), pp. 751-783] for large-scale extended linear-quadratic programming. The variants include a second update scheme for the iterates, where the primal-dual feedback is arranged in a new pattern, as well as alternatives for the "perfect line search" in the original version of the reference. Second, new linear convergence results are proved for all these variants of the algorithm, including the original version as a special case, without the additional assumptions used by Zhu and Rockafellar. For the variants with the second update scheme, a much sharper estimation for the rate of convergence is obtained due to the new primal-dual feedback pattern.</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/0805006</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1052-6234
ispartof SIAM journal on optimization, 1995-02, Vol.5 (1), p.114-128
issn 1052-6234
1095-7189
language eng
recordid cdi_proquest_journals_920153046
source SIAM Journals Online
subjects Algorithms
Applied mathematics
Optimization
Quadratic programming
Values
title On the Primal-Dual Steepest Descent Algorithm for Extended Linear-Quadratic Programming
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T22%3A43%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Primal-Dual%20Steepest%20Descent%20Algorithm%20for%20Extended%20Linear-Quadratic%20Programming&rft.jtitle=SIAM%20journal%20on%20optimization&rft.au=Zhu,%20Ciyou&rft.date=1995-02&rft.volume=5&rft.issue=1&rft.spage=114&rft.epage=128&rft.pages=114-128&rft.issn=1052-6234&rft.eissn=1095-7189&rft_id=info:doi/10.1137/0805006&rft_dat=%3Cproquest_cross%3E2580230011%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=920153046&rft_id=info:pmid/&rfr_iscdi=true