Convergence of a Factorized Broyden-Like Family for Nonlinear Least Squares Problems

This paper is concerned with factorized quasi-Newton methods for nonlinear least squares problems. A one parameter class of symmetric positive definite quasi-Newton updates is given that corresponds to the Broyden family. We call this new class of update formula a factorized Broyden-like family. Thi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on optimization 1995-11, Vol.5 (4), p.770-791
Hauptverfasser: Yabe, Hiroshi, Yamaki, Naokazu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 791
container_issue 4
container_start_page 770
container_title SIAM journal on optimization
container_volume 5
creator Yabe, Hiroshi
Yamaki, Naokazu
description This paper is concerned with factorized quasi-Newton methods for nonlinear least squares problems. A one parameter class of symmetric positive definite quasi-Newton updates is given that corresponds to the Broyden family. We call this new class of update formula a factorized Broyden-like family. This family is based on the full rank factorized form of a structured quasi-Newton update. We prove that a quasi-Newton method using the factorized Broyden-like family possesses local and q-superlinear convergence properties.
doi_str_mv 10.1137/0805037
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_920149786</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2580142611</sourcerecordid><originalsourceid>FETCH-LOGICAL-c182t-add6a37c66f0c92df1abcd547f195e41e443d805da02b0272fd66897240e91273</originalsourceid><addsrcrecordid>eNotUEtLAzEYDKJgreJfCF48rea1eRy1WBUWFaznJU2-yNbtpk22wvrr3dKeZhiGGWYQuqbkjlKu7okmJeHqBE0oMWWhqDane16yQjIuztFFzitCiDZST9BiFrtfSN_QOcAxYIvn1vUxNX_g8WOKg4euqJofGPV10w44xITfYtc2HdiEK7C5x5_bnU2Q8UeKyxbW-RKdBdtmuDriFH3Nnxazl6J6f36dPVSFo5r1hfVeWq6clIE4w3ygdul8KVSgpgRBQQjuxzXeErYkTLHgpdRGMUHAUKb4FN0ccjcpbneQ-3oVd6kbK2vDCBVGaTmabg8ml2LOCUK9Sc3apqGmpN4_Vh8f4_-GQFw8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>920149786</pqid></control><display><type>article</type><title>Convergence of a Factorized Broyden-Like Family for Nonlinear Least Squares Problems</title><source>SIAM Journals Online</source><creator>Yabe, Hiroshi ; Yamaki, Naokazu</creator><creatorcontrib>Yabe, Hiroshi ; Yamaki, Naokazu</creatorcontrib><description>This paper is concerned with factorized quasi-Newton methods for nonlinear least squares problems. A one parameter class of symmetric positive definite quasi-Newton updates is given that corresponds to the Broyden family. We call this new class of update formula a factorized Broyden-like family. This family is based on the full rank factorized form of a structured quasi-Newton update. We prove that a quasi-Newton method using the factorized Broyden-like family possesses local and q-superlinear convergence properties.</description><identifier>ISSN: 1052-6234</identifier><identifier>EISSN: 1095-7189</identifier><identifier>DOI: 10.1137/0805037</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Algorithms ; Approximation ; Methods</subject><ispartof>SIAM journal on optimization, 1995-11, Vol.5 (4), p.770-791</ispartof><rights>[Copyright] © 1995 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c182t-add6a37c66f0c92df1abcd547f195e41e443d805da02b0272fd66897240e91273</citedby><cites>FETCH-LOGICAL-c182t-add6a37c66f0c92df1abcd547f195e41e443d805da02b0272fd66897240e91273</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3171,27901,27902</link.rule.ids></links><search><creatorcontrib>Yabe, Hiroshi</creatorcontrib><creatorcontrib>Yamaki, Naokazu</creatorcontrib><title>Convergence of a Factorized Broyden-Like Family for Nonlinear Least Squares Problems</title><title>SIAM journal on optimization</title><description>This paper is concerned with factorized quasi-Newton methods for nonlinear least squares problems. A one parameter class of symmetric positive definite quasi-Newton updates is given that corresponds to the Broyden family. We call this new class of update formula a factorized Broyden-like family. This family is based on the full rank factorized form of a structured quasi-Newton update. We prove that a quasi-Newton method using the factorized Broyden-like family possesses local and q-superlinear convergence properties.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Methods</subject><issn>1052-6234</issn><issn>1095-7189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNotUEtLAzEYDKJgreJfCF48rea1eRy1WBUWFaznJU2-yNbtpk22wvrr3dKeZhiGGWYQuqbkjlKu7okmJeHqBE0oMWWhqDane16yQjIuztFFzitCiDZST9BiFrtfSN_QOcAxYIvn1vUxNX_g8WOKg4euqJofGPV10w44xITfYtc2HdiEK7C5x5_bnU2Q8UeKyxbW-RKdBdtmuDriFH3Nnxazl6J6f36dPVSFo5r1hfVeWq6clIE4w3ygdul8KVSgpgRBQQjuxzXeErYkTLHgpdRGMUHAUKb4FN0ccjcpbneQ-3oVd6kbK2vDCBVGaTmabg8ml2LOCUK9Sc3apqGmpN4_Vh8f4_-GQFw8</recordid><startdate>199511</startdate><enddate>199511</enddate><creator>Yabe, Hiroshi</creator><creator>Yamaki, Naokazu</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>U9A</scope></search><sort><creationdate>199511</creationdate><title>Convergence of a Factorized Broyden-Like Family for Nonlinear Least Squares Problems</title><author>Yabe, Hiroshi ; Yamaki, Naokazu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c182t-add6a37c66f0c92df1abcd547f195e41e443d805da02b0272fd66897240e91273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yabe, Hiroshi</creatorcontrib><creatorcontrib>Yamaki, Naokazu</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career &amp; Technical Education Database</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yabe, Hiroshi</au><au>Yamaki, Naokazu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Convergence of a Factorized Broyden-Like Family for Nonlinear Least Squares Problems</atitle><jtitle>SIAM journal on optimization</jtitle><date>1995-11</date><risdate>1995</risdate><volume>5</volume><issue>4</issue><spage>770</spage><epage>791</epage><pages>770-791</pages><issn>1052-6234</issn><eissn>1095-7189</eissn><abstract>This paper is concerned with factorized quasi-Newton methods for nonlinear least squares problems. A one parameter class of symmetric positive definite quasi-Newton updates is given that corresponds to the Broyden family. We call this new class of update formula a factorized Broyden-like family. This family is based on the full rank factorized form of a structured quasi-Newton update. We prove that a quasi-Newton method using the factorized Broyden-like family possesses local and q-superlinear convergence properties.</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/0805037</doi><tpages>22</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1052-6234
ispartof SIAM journal on optimization, 1995-11, Vol.5 (4), p.770-791
issn 1052-6234
1095-7189
language eng
recordid cdi_proquest_journals_920149786
source SIAM Journals Online
subjects Algorithms
Approximation
Methods
title Convergence of a Factorized Broyden-Like Family for Nonlinear Least Squares Problems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T15%3A52%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Convergence%20of%20a%20Factorized%20Broyden-Like%20Family%20for%20Nonlinear%20Least%20Squares%20Problems&rft.jtitle=SIAM%20journal%20on%20optimization&rft.au=Yabe,%20Hiroshi&rft.date=1995-11&rft.volume=5&rft.issue=4&rft.spage=770&rft.epage=791&rft.pages=770-791&rft.issn=1052-6234&rft.eissn=1095-7189&rft_id=info:doi/10.1137/0805037&rft_dat=%3Cproquest_cross%3E2580142611%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=920149786&rft_id=info:pmid/&rfr_iscdi=true