Pancake-wound central solenoid coil for ITER
The central solenoid (CS) coil of the Reduced Technical Objective/Reduced Cost (RTO/RC) ITER is structurally independent from the toroidal magnet system and consists of 6 modules. The Nb/sub 3/Sn superconducting cable is a similar design to that of the CS model coil. The pancake-wound technique has...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on applied superconductivity 2000-03, Vol.10 (1), p.576-579 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 579 |
---|---|
container_issue | 1 |
container_start_page | 576 |
container_title | IEEE transactions on applied superconductivity |
container_volume | 10 |
creator | Yoshida, K. Krivchenkov, Y. Kitamura, K. Sborchia, C. Stepanov, B. Kubo, H. Ohmori, J. |
description | The central solenoid (CS) coil of the Reduced Technical Objective/Reduced Cost (RTO/RC) ITER is structurally independent from the toroidal magnet system and consists of 6 modules. The Nb/sub 3/Sn superconducting cable is a similar design to that of the CS model coil. The pancake-wound technique has been selected to allow non-uniform current distributions along the vertical axis since this is important for plasma shape control. The CS winding radial build should be minimized to provide as much flux as possible. Two alternatives for the CS conduit reinforcement are being considered: a co-wound reinforcing strip and a reinforcing armor around a circular tube. Separation forces between modules are supported by the axial pre-compression structure. The performance of the CS structure has been assessed using an axisymmetric finite element model of the winding structure at the CS mid-plane. |
doi_str_mv | 10.1109/77.828300 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_920013670</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>828300</ieee_id><sourcerecordid>914634788</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-8a90a4045c16d90df0d9cbdbed9262d25589da449d215c3de6189f1fa881cc623</originalsourceid><addsrcrecordid>eNqNkUFLAzEQhYMoWKsHr54WEUVwayabZJOjlKqFgiL1HNIkC1u3m5p0Ef-9KVsUPIinhMyXNzPvIXQKeASA5W1ZjgQRBcZ7aACMiZwwYPvpjhnkgpDiEB3FuMQYqKBsgG6edWv0m8s_fNfazLh2E3STRd-41tfpwddNVvmQTeeTl2N0UOkmupPdOUSv95P5-DGfPT1Mx3ez3FBONrnQEmuKKTPArcS2wlaahV04KwknlqSxpNWUSkuAmcI6DkJWUGkhwBhOiiG66nXXwb93Lm7Uqo7GNY1une-ikkB5QUshEnn5J0kEFRj4P8CScyjEtvf5L3Dpu9CmdZUkybaClzhB1z1kgo8xuEqtQ73S4VMBVtscVFmqPofEXuwEdTS6qUIyvI4_HwrGkw0JO-ux2jn3Xd1pfAHQoYvH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>920013670</pqid></control><display><type>article</type><title>Pancake-wound central solenoid coil for ITER</title><source>IEEE Electronic Library (IEL)</source><creator>Yoshida, K. ; Krivchenkov, Y. ; Kitamura, K. ; Sborchia, C. ; Stepanov, B. ; Kubo, H. ; Ohmori, J.</creator><creatorcontrib>Yoshida, K. ; Krivchenkov, Y. ; Kitamura, K. ; Sborchia, C. ; Stepanov, B. ; Kubo, H. ; Ohmori, J.</creatorcontrib><description>The central solenoid (CS) coil of the Reduced Technical Objective/Reduced Cost (RTO/RC) ITER is structurally independent from the toroidal magnet system and consists of 6 modules. The Nb/sub 3/Sn superconducting cable is a similar design to that of the CS model coil. The pancake-wound technique has been selected to allow non-uniform current distributions along the vertical axis since this is important for plasma shape control. The CS winding radial build should be minimized to provide as much flux as possible. Two alternatives for the CS conduit reinforcement are being considered: a co-wound reinforcing strip and a reinforcing armor around a circular tube. Separation forces between modules are supported by the axial pre-compression structure. The performance of the CS structure has been assessed using an axisymmetric finite element model of the winding structure at the CS mid-plane.</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/77.828300</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Coiling ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Construction ; Costs ; Current distribution ; Electrical engineering. Electrical power engineering ; Electromagnets ; Exact sciences and technology ; Generation of magnetic fields; magnets ; Instruments, apparatus, components and techniques common to several branches of physics and astronomy ; Magnetic components, instruments and techniques ; Magnetic flux ; Magnetic properties and materials ; Magnetic separation ; Mathematical models ; Modules ; Niobium ; Permanent magnets ; Physics ; Solenoids ; Studies of specific magnetic materials ; Superconducting cables ; Superconducting coils ; Superconducting device characterization, design, and modeling ; Superconducting magnets ; Superconductivity ; Tin ; Toroidal magnetic fields ; Various equipment and components ; Winding</subject><ispartof>IEEE transactions on applied superconductivity, 2000-03, Vol.10 (1), p.576-579</ispartof><rights>2000 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2000</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462t-8a90a4045c16d90df0d9cbdbed9262d25589da449d215c3de6189f1fa881cc623</citedby><cites>FETCH-LOGICAL-c462t-8a90a4045c16d90df0d9cbdbed9262d25589da449d215c3de6189f1fa881cc623</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/828300$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,796,23930,23931,25140,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/828300$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1356215$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Yoshida, K.</creatorcontrib><creatorcontrib>Krivchenkov, Y.</creatorcontrib><creatorcontrib>Kitamura, K.</creatorcontrib><creatorcontrib>Sborchia, C.</creatorcontrib><creatorcontrib>Stepanov, B.</creatorcontrib><creatorcontrib>Kubo, H.</creatorcontrib><creatorcontrib>Ohmori, J.</creatorcontrib><title>Pancake-wound central solenoid coil for ITER</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description>The central solenoid (CS) coil of the Reduced Technical Objective/Reduced Cost (RTO/RC) ITER is structurally independent from the toroidal magnet system and consists of 6 modules. The Nb/sub 3/Sn superconducting cable is a similar design to that of the CS model coil. The pancake-wound technique has been selected to allow non-uniform current distributions along the vertical axis since this is important for plasma shape control. The CS winding radial build should be minimized to provide as much flux as possible. Two alternatives for the CS conduit reinforcement are being considered: a co-wound reinforcing strip and a reinforcing armor around a circular tube. Separation forces between modules are supported by the axial pre-compression structure. The performance of the CS structure has been assessed using an axisymmetric finite element model of the winding structure at the CS mid-plane.</description><subject>Applied sciences</subject><subject>Coiling</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Construction</subject><subject>Costs</subject><subject>Current distribution</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electromagnets</subject><subject>Exact sciences and technology</subject><subject>Generation of magnetic fields; magnets</subject><subject>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</subject><subject>Magnetic components, instruments and techniques</subject><subject>Magnetic flux</subject><subject>Magnetic properties and materials</subject><subject>Magnetic separation</subject><subject>Mathematical models</subject><subject>Modules</subject><subject>Niobium</subject><subject>Permanent magnets</subject><subject>Physics</subject><subject>Solenoids</subject><subject>Studies of specific magnetic materials</subject><subject>Superconducting cables</subject><subject>Superconducting coils</subject><subject>Superconducting device characterization, design, and modeling</subject><subject>Superconducting magnets</subject><subject>Superconductivity</subject><subject>Tin</subject><subject>Toroidal magnetic fields</subject><subject>Various equipment and components</subject><subject>Winding</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqNkUFLAzEQhYMoWKsHr54WEUVwayabZJOjlKqFgiL1HNIkC1u3m5p0Ef-9KVsUPIinhMyXNzPvIXQKeASA5W1ZjgQRBcZ7aACMiZwwYPvpjhnkgpDiEB3FuMQYqKBsgG6edWv0m8s_fNfazLh2E3STRd-41tfpwddNVvmQTeeTl2N0UOkmupPdOUSv95P5-DGfPT1Mx3ez3FBONrnQEmuKKTPArcS2wlaahV04KwknlqSxpNWUSkuAmcI6DkJWUGkhwBhOiiG66nXXwb93Lm7Uqo7GNY1une-ikkB5QUshEnn5J0kEFRj4P8CScyjEtvf5L3Dpu9CmdZUkybaClzhB1z1kgo8xuEqtQ73S4VMBVtscVFmqPofEXuwEdTS6qUIyvI4_HwrGkw0JO-ux2jn3Xd1pfAHQoYvH</recordid><startdate>20000301</startdate><enddate>20000301</enddate><creator>Yoshida, K.</creator><creator>Krivchenkov, Y.</creator><creator>Kitamura, K.</creator><creator>Sborchia, C.</creator><creator>Stepanov, B.</creator><creator>Kubo, H.</creator><creator>Ohmori, J.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20000301</creationdate><title>Pancake-wound central solenoid coil for ITER</title><author>Yoshida, K. ; Krivchenkov, Y. ; Kitamura, K. ; Sborchia, C. ; Stepanov, B. ; Kubo, H. ; Ohmori, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-8a90a4045c16d90df0d9cbdbed9262d25589da449d215c3de6189f1fa881cc623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Applied sciences</topic><topic>Coiling</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Construction</topic><topic>Costs</topic><topic>Current distribution</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electromagnets</topic><topic>Exact sciences and technology</topic><topic>Generation of magnetic fields; magnets</topic><topic>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</topic><topic>Magnetic components, instruments and techniques</topic><topic>Magnetic flux</topic><topic>Magnetic properties and materials</topic><topic>Magnetic separation</topic><topic>Mathematical models</topic><topic>Modules</topic><topic>Niobium</topic><topic>Permanent magnets</topic><topic>Physics</topic><topic>Solenoids</topic><topic>Studies of specific magnetic materials</topic><topic>Superconducting cables</topic><topic>Superconducting coils</topic><topic>Superconducting device characterization, design, and modeling</topic><topic>Superconducting magnets</topic><topic>Superconductivity</topic><topic>Tin</topic><topic>Toroidal magnetic fields</topic><topic>Various equipment and components</topic><topic>Winding</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yoshida, K.</creatorcontrib><creatorcontrib>Krivchenkov, Y.</creatorcontrib><creatorcontrib>Kitamura, K.</creatorcontrib><creatorcontrib>Sborchia, C.</creatorcontrib><creatorcontrib>Stepanov, B.</creatorcontrib><creatorcontrib>Kubo, H.</creatorcontrib><creatorcontrib>Ohmori, J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yoshida, K.</au><au>Krivchenkov, Y.</au><au>Kitamura, K.</au><au>Sborchia, C.</au><au>Stepanov, B.</au><au>Kubo, H.</au><au>Ohmori, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pancake-wound central solenoid coil for ITER</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>2000-03-01</date><risdate>2000</risdate><volume>10</volume><issue>1</issue><spage>576</spage><epage>579</epage><pages>576-579</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract>The central solenoid (CS) coil of the Reduced Technical Objective/Reduced Cost (RTO/RC) ITER is structurally independent from the toroidal magnet system and consists of 6 modules. The Nb/sub 3/Sn superconducting cable is a similar design to that of the CS model coil. The pancake-wound technique has been selected to allow non-uniform current distributions along the vertical axis since this is important for plasma shape control. The CS winding radial build should be minimized to provide as much flux as possible. Two alternatives for the CS conduit reinforcement are being considered: a co-wound reinforcing strip and a reinforcing armor around a circular tube. Separation forces between modules are supported by the axial pre-compression structure. The performance of the CS structure has been assessed using an axisymmetric finite element model of the winding structure at the CS mid-plane.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/77.828300</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1051-8223 |
ispartof | IEEE transactions on applied superconductivity, 2000-03, Vol.10 (1), p.576-579 |
issn | 1051-8223 1558-2515 |
language | eng |
recordid | cdi_proquest_journals_920013670 |
source | IEEE Electronic Library (IEL) |
subjects | Applied sciences Coiling Condensed matter: electronic structure, electrical, magnetic, and optical properties Construction Costs Current distribution Electrical engineering. Electrical power engineering Electromagnets Exact sciences and technology Generation of magnetic fields magnets Instruments, apparatus, components and techniques common to several branches of physics and astronomy Magnetic components, instruments and techniques Magnetic flux Magnetic properties and materials Magnetic separation Mathematical models Modules Niobium Permanent magnets Physics Solenoids Studies of specific magnetic materials Superconducting cables Superconducting coils Superconducting device characterization, design, and modeling Superconducting magnets Superconductivity Tin Toroidal magnetic fields Various equipment and components Winding |
title | Pancake-wound central solenoid coil for ITER |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T15%3A43%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pancake-wound%20central%20solenoid%20coil%20for%20ITER&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Yoshida,%20K.&rft.date=2000-03-01&rft.volume=10&rft.issue=1&rft.spage=576&rft.epage=579&rft.pages=576-579&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/77.828300&rft_dat=%3Cproquest_RIE%3E914634788%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=920013670&rft_id=info:pmid/&rft_ieee_id=828300&rfr_iscdi=true |