Pancake-wound central solenoid coil for ITER

The central solenoid (CS) coil of the Reduced Technical Objective/Reduced Cost (RTO/RC) ITER is structurally independent from the toroidal magnet system and consists of 6 modules. The Nb/sub 3/Sn superconducting cable is a similar design to that of the CS model coil. The pancake-wound technique has...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on applied superconductivity 2000-03, Vol.10 (1), p.576-579
Hauptverfasser: Yoshida, K., Krivchenkov, Y., Kitamura, K., Sborchia, C., Stepanov, B., Kubo, H., Ohmori, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 579
container_issue 1
container_start_page 576
container_title IEEE transactions on applied superconductivity
container_volume 10
creator Yoshida, K.
Krivchenkov, Y.
Kitamura, K.
Sborchia, C.
Stepanov, B.
Kubo, H.
Ohmori, J.
description The central solenoid (CS) coil of the Reduced Technical Objective/Reduced Cost (RTO/RC) ITER is structurally independent from the toroidal magnet system and consists of 6 modules. The Nb/sub 3/Sn superconducting cable is a similar design to that of the CS model coil. The pancake-wound technique has been selected to allow non-uniform current distributions along the vertical axis since this is important for plasma shape control. The CS winding radial build should be minimized to provide as much flux as possible. Two alternatives for the CS conduit reinforcement are being considered: a co-wound reinforcing strip and a reinforcing armor around a circular tube. Separation forces between modules are supported by the axial pre-compression structure. The performance of the CS structure has been assessed using an axisymmetric finite element model of the winding structure at the CS mid-plane.
doi_str_mv 10.1109/77.828300
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_920013670</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>828300</ieee_id><sourcerecordid>914634788</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-8a90a4045c16d90df0d9cbdbed9262d25589da449d215c3de6189f1fa881cc623</originalsourceid><addsrcrecordid>eNqNkUFLAzEQhYMoWKsHr54WEUVwayabZJOjlKqFgiL1HNIkC1u3m5p0Ef-9KVsUPIinhMyXNzPvIXQKeASA5W1ZjgQRBcZ7aACMiZwwYPvpjhnkgpDiEB3FuMQYqKBsgG6edWv0m8s_fNfazLh2E3STRd-41tfpwddNVvmQTeeTl2N0UOkmupPdOUSv95P5-DGfPT1Mx3ez3FBONrnQEmuKKTPArcS2wlaahV04KwknlqSxpNWUSkuAmcI6DkJWUGkhwBhOiiG66nXXwb93Lm7Uqo7GNY1une-ikkB5QUshEnn5J0kEFRj4P8CScyjEtvf5L3Dpu9CmdZUkybaClzhB1z1kgo8xuEqtQ73S4VMBVtscVFmqPofEXuwEdTS6qUIyvI4_HwrGkw0JO-ux2jn3Xd1pfAHQoYvH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>920013670</pqid></control><display><type>article</type><title>Pancake-wound central solenoid coil for ITER</title><source>IEEE Electronic Library (IEL)</source><creator>Yoshida, K. ; Krivchenkov, Y. ; Kitamura, K. ; Sborchia, C. ; Stepanov, B. ; Kubo, H. ; Ohmori, J.</creator><creatorcontrib>Yoshida, K. ; Krivchenkov, Y. ; Kitamura, K. ; Sborchia, C. ; Stepanov, B. ; Kubo, H. ; Ohmori, J.</creatorcontrib><description>The central solenoid (CS) coil of the Reduced Technical Objective/Reduced Cost (RTO/RC) ITER is structurally independent from the toroidal magnet system and consists of 6 modules. The Nb/sub 3/Sn superconducting cable is a similar design to that of the CS model coil. The pancake-wound technique has been selected to allow non-uniform current distributions along the vertical axis since this is important for plasma shape control. The CS winding radial build should be minimized to provide as much flux as possible. Two alternatives for the CS conduit reinforcement are being considered: a co-wound reinforcing strip and a reinforcing armor around a circular tube. Separation forces between modules are supported by the axial pre-compression structure. The performance of the CS structure has been assessed using an axisymmetric finite element model of the winding structure at the CS mid-plane.</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/77.828300</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Coiling ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Construction ; Costs ; Current distribution ; Electrical engineering. Electrical power engineering ; Electromagnets ; Exact sciences and technology ; Generation of magnetic fields; magnets ; Instruments, apparatus, components and techniques common to several branches of physics and astronomy ; Magnetic components, instruments and techniques ; Magnetic flux ; Magnetic properties and materials ; Magnetic separation ; Mathematical models ; Modules ; Niobium ; Permanent magnets ; Physics ; Solenoids ; Studies of specific magnetic materials ; Superconducting cables ; Superconducting coils ; Superconducting device characterization, design, and modeling ; Superconducting magnets ; Superconductivity ; Tin ; Toroidal magnetic fields ; Various equipment and components ; Winding</subject><ispartof>IEEE transactions on applied superconductivity, 2000-03, Vol.10 (1), p.576-579</ispartof><rights>2000 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2000</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462t-8a90a4045c16d90df0d9cbdbed9262d25589da449d215c3de6189f1fa881cc623</citedby><cites>FETCH-LOGICAL-c462t-8a90a4045c16d90df0d9cbdbed9262d25589da449d215c3de6189f1fa881cc623</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/828300$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,796,23930,23931,25140,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/828300$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1356215$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Yoshida, K.</creatorcontrib><creatorcontrib>Krivchenkov, Y.</creatorcontrib><creatorcontrib>Kitamura, K.</creatorcontrib><creatorcontrib>Sborchia, C.</creatorcontrib><creatorcontrib>Stepanov, B.</creatorcontrib><creatorcontrib>Kubo, H.</creatorcontrib><creatorcontrib>Ohmori, J.</creatorcontrib><title>Pancake-wound central solenoid coil for ITER</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description>The central solenoid (CS) coil of the Reduced Technical Objective/Reduced Cost (RTO/RC) ITER is structurally independent from the toroidal magnet system and consists of 6 modules. The Nb/sub 3/Sn superconducting cable is a similar design to that of the CS model coil. The pancake-wound technique has been selected to allow non-uniform current distributions along the vertical axis since this is important for plasma shape control. The CS winding radial build should be minimized to provide as much flux as possible. Two alternatives for the CS conduit reinforcement are being considered: a co-wound reinforcing strip and a reinforcing armor around a circular tube. Separation forces between modules are supported by the axial pre-compression structure. The performance of the CS structure has been assessed using an axisymmetric finite element model of the winding structure at the CS mid-plane.</description><subject>Applied sciences</subject><subject>Coiling</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Construction</subject><subject>Costs</subject><subject>Current distribution</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electromagnets</subject><subject>Exact sciences and technology</subject><subject>Generation of magnetic fields; magnets</subject><subject>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</subject><subject>Magnetic components, instruments and techniques</subject><subject>Magnetic flux</subject><subject>Magnetic properties and materials</subject><subject>Magnetic separation</subject><subject>Mathematical models</subject><subject>Modules</subject><subject>Niobium</subject><subject>Permanent magnets</subject><subject>Physics</subject><subject>Solenoids</subject><subject>Studies of specific magnetic materials</subject><subject>Superconducting cables</subject><subject>Superconducting coils</subject><subject>Superconducting device characterization, design, and modeling</subject><subject>Superconducting magnets</subject><subject>Superconductivity</subject><subject>Tin</subject><subject>Toroidal magnetic fields</subject><subject>Various equipment and components</subject><subject>Winding</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqNkUFLAzEQhYMoWKsHr54WEUVwayabZJOjlKqFgiL1HNIkC1u3m5p0Ef-9KVsUPIinhMyXNzPvIXQKeASA5W1ZjgQRBcZ7aACMiZwwYPvpjhnkgpDiEB3FuMQYqKBsgG6edWv0m8s_fNfazLh2E3STRd-41tfpwddNVvmQTeeTl2N0UOkmupPdOUSv95P5-DGfPT1Mx3ez3FBONrnQEmuKKTPArcS2wlaahV04KwknlqSxpNWUSkuAmcI6DkJWUGkhwBhOiiG66nXXwb93Lm7Uqo7GNY1une-ikkB5QUshEnn5J0kEFRj4P8CScyjEtvf5L3Dpu9CmdZUkybaClzhB1z1kgo8xuEqtQ73S4VMBVtscVFmqPofEXuwEdTS6qUIyvI4_HwrGkw0JO-ux2jn3Xd1pfAHQoYvH</recordid><startdate>20000301</startdate><enddate>20000301</enddate><creator>Yoshida, K.</creator><creator>Krivchenkov, Y.</creator><creator>Kitamura, K.</creator><creator>Sborchia, C.</creator><creator>Stepanov, B.</creator><creator>Kubo, H.</creator><creator>Ohmori, J.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20000301</creationdate><title>Pancake-wound central solenoid coil for ITER</title><author>Yoshida, K. ; Krivchenkov, Y. ; Kitamura, K. ; Sborchia, C. ; Stepanov, B. ; Kubo, H. ; Ohmori, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-8a90a4045c16d90df0d9cbdbed9262d25589da449d215c3de6189f1fa881cc623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Applied sciences</topic><topic>Coiling</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Construction</topic><topic>Costs</topic><topic>Current distribution</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electromagnets</topic><topic>Exact sciences and technology</topic><topic>Generation of magnetic fields; magnets</topic><topic>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</topic><topic>Magnetic components, instruments and techniques</topic><topic>Magnetic flux</topic><topic>Magnetic properties and materials</topic><topic>Magnetic separation</topic><topic>Mathematical models</topic><topic>Modules</topic><topic>Niobium</topic><topic>Permanent magnets</topic><topic>Physics</topic><topic>Solenoids</topic><topic>Studies of specific magnetic materials</topic><topic>Superconducting cables</topic><topic>Superconducting coils</topic><topic>Superconducting device characterization, design, and modeling</topic><topic>Superconducting magnets</topic><topic>Superconductivity</topic><topic>Tin</topic><topic>Toroidal magnetic fields</topic><topic>Various equipment and components</topic><topic>Winding</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yoshida, K.</creatorcontrib><creatorcontrib>Krivchenkov, Y.</creatorcontrib><creatorcontrib>Kitamura, K.</creatorcontrib><creatorcontrib>Sborchia, C.</creatorcontrib><creatorcontrib>Stepanov, B.</creatorcontrib><creatorcontrib>Kubo, H.</creatorcontrib><creatorcontrib>Ohmori, J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yoshida, K.</au><au>Krivchenkov, Y.</au><au>Kitamura, K.</au><au>Sborchia, C.</au><au>Stepanov, B.</au><au>Kubo, H.</au><au>Ohmori, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pancake-wound central solenoid coil for ITER</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>2000-03-01</date><risdate>2000</risdate><volume>10</volume><issue>1</issue><spage>576</spage><epage>579</epage><pages>576-579</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract>The central solenoid (CS) coil of the Reduced Technical Objective/Reduced Cost (RTO/RC) ITER is structurally independent from the toroidal magnet system and consists of 6 modules. The Nb/sub 3/Sn superconducting cable is a similar design to that of the CS model coil. The pancake-wound technique has been selected to allow non-uniform current distributions along the vertical axis since this is important for plasma shape control. The CS winding radial build should be minimized to provide as much flux as possible. Two alternatives for the CS conduit reinforcement are being considered: a co-wound reinforcing strip and a reinforcing armor around a circular tube. Separation forces between modules are supported by the axial pre-compression structure. The performance of the CS structure has been assessed using an axisymmetric finite element model of the winding structure at the CS mid-plane.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/77.828300</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-8223
ispartof IEEE transactions on applied superconductivity, 2000-03, Vol.10 (1), p.576-579
issn 1051-8223
1558-2515
language eng
recordid cdi_proquest_journals_920013670
source IEEE Electronic Library (IEL)
subjects Applied sciences
Coiling
Condensed matter: electronic structure, electrical, magnetic, and optical properties
Construction
Costs
Current distribution
Electrical engineering. Electrical power engineering
Electromagnets
Exact sciences and technology
Generation of magnetic fields
magnets
Instruments, apparatus, components and techniques common to several branches of physics and astronomy
Magnetic components, instruments and techniques
Magnetic flux
Magnetic properties and materials
Magnetic separation
Mathematical models
Modules
Niobium
Permanent magnets
Physics
Solenoids
Studies of specific magnetic materials
Superconducting cables
Superconducting coils
Superconducting device characterization, design, and modeling
Superconducting magnets
Superconductivity
Tin
Toroidal magnetic fields
Various equipment and components
Winding
title Pancake-wound central solenoid coil for ITER
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T15%3A43%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pancake-wound%20central%20solenoid%20coil%20for%20ITER&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Yoshida,%20K.&rft.date=2000-03-01&rft.volume=10&rft.issue=1&rft.spage=576&rft.epage=579&rft.pages=576-579&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/77.828300&rft_dat=%3Cproquest_RIE%3E914634788%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=920013670&rft_id=info:pmid/&rft_ieee_id=828300&rfr_iscdi=true