On the Asymptotic Complexity of Matrix Multiplication

The main results of this paper have the following flavor: Given one algorithm for multiplying matrices, there exists another, better, algorithm. A consequence of these results is that $\omega $, the exponent for matrix multiplication, is a limit point, that is, it cannot be realized by any single al...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on computing 1982-08, Vol.11 (3), p.472-492
Hauptverfasser: Coppersmith, D., Winograd, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 492
container_issue 3
container_start_page 472
container_title SIAM journal on computing
container_volume 11
creator Coppersmith, D.
Winograd, S.
description The main results of this paper have the following flavor: Given one algorithm for multiplying matrices, there exists another, better, algorithm. A consequence of these results is that $\omega $, the exponent for matrix multiplication, is a limit point, that is, it cannot be realized by any single algorithm. We also use these results to construct a new algorithm which shows that $\omega < 2.495548$.
doi_str_mv 10.1137/0211038
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_919995059</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2579217961</sourcerecordid><originalsourceid>FETCH-LOGICAL-c182t-bf7203d193f2feeb5a9d5e8c806f7f031277f902e39b10576b39745d30b777293</originalsourceid><addsrcrecordid>eNotkMtqwzAUREVpoW5a-guim67c3itZkbUMoS9IyKZdCz8kqmBbriRD_PdNSFazOcwMh5BHhBdELl-BIQIvr0iGoEQuEfGaZABK5oIreUvuYtwDYFEgz4jYDTT9GrqKcz8mn1xD174fO3Nwaabe0m2VgjvQ7dQlN3auqZLzwz25sVUXzcMlF-Tn_e17_Zlvdh9f69Umb7BkKa-tZMBbVNwya0wtKtUKUzYlLK20wJFJaRUww1WNIOSyPh4sRMuhllIyxRfk6dw7Bv83mZj03k9hOE5qhUopAeIEPZ-hJvgYg7F6DK6vwqwR9EmJvijh_zskUNs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>919995059</pqid></control><display><type>article</type><title>On the Asymptotic Complexity of Matrix Multiplication</title><source>SIAM Journals Online</source><creator>Coppersmith, D. ; Winograd, S.</creator><creatorcontrib>Coppersmith, D. ; Winograd, S.</creatorcontrib><description>The main results of this paper have the following flavor: Given one algorithm for multiplying matrices, there exists another, better, algorithm. A consequence of these results is that $\omega $, the exponent for matrix multiplication, is a limit point, that is, it cannot be realized by any single algorithm. We also use these results to construct a new algorithm which shows that $\omega &lt; 2.495548$.</description><identifier>ISSN: 0097-5397</identifier><identifier>EISSN: 1095-7111</identifier><identifier>DOI: 10.1137/0211038</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Algorithms ; Construction ; Multiplication &amp; division</subject><ispartof>SIAM journal on computing, 1982-08, Vol.11 (3), p.472-492</ispartof><rights>[Copyright] © 1982 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c182t-bf7203d193f2feeb5a9d5e8c806f7f031277f902e39b10576b39745d30b777293</citedby><cites>FETCH-LOGICAL-c182t-bf7203d193f2feeb5a9d5e8c806f7f031277f902e39b10576b39745d30b777293</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3184,27924,27925</link.rule.ids></links><search><creatorcontrib>Coppersmith, D.</creatorcontrib><creatorcontrib>Winograd, S.</creatorcontrib><title>On the Asymptotic Complexity of Matrix Multiplication</title><title>SIAM journal on computing</title><description>The main results of this paper have the following flavor: Given one algorithm for multiplying matrices, there exists another, better, algorithm. A consequence of these results is that $\omega $, the exponent for matrix multiplication, is a limit point, that is, it cannot be realized by any single algorithm. We also use these results to construct a new algorithm which shows that $\omega &lt; 2.495548$.</description><subject>Algorithms</subject><subject>Construction</subject><subject>Multiplication &amp; division</subject><issn>0097-5397</issn><issn>1095-7111</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1982</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNotkMtqwzAUREVpoW5a-guim67c3itZkbUMoS9IyKZdCz8kqmBbriRD_PdNSFazOcwMh5BHhBdELl-BIQIvr0iGoEQuEfGaZABK5oIreUvuYtwDYFEgz4jYDTT9GrqKcz8mn1xD174fO3Nwaabe0m2VgjvQ7dQlN3auqZLzwz25sVUXzcMlF-Tn_e17_Zlvdh9f69Umb7BkKa-tZMBbVNwya0wtKtUKUzYlLK20wJFJaRUww1WNIOSyPh4sRMuhllIyxRfk6dw7Bv83mZj03k9hOE5qhUopAeIEPZ-hJvgYg7F6DK6vwqwR9EmJvijh_zskUNs</recordid><startdate>19820801</startdate><enddate>19820801</enddate><creator>Coppersmith, D.</creator><creator>Winograd, S.</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0W</scope><scope>U9A</scope></search><sort><creationdate>19820801</creationdate><title>On the Asymptotic Complexity of Matrix Multiplication</title><author>Coppersmith, D. ; Winograd, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c182t-bf7203d193f2feeb5a9d5e8c806f7f031277f902e39b10576b39745d30b777293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1982</creationdate><topic>Algorithms</topic><topic>Construction</topic><topic>Multiplication &amp; division</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Coppersmith, D.</creatorcontrib><creatorcontrib>Winograd, S.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career &amp; Technical Education Database</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>SIAM journal on computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Coppersmith, D.</au><au>Winograd, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Asymptotic Complexity of Matrix Multiplication</atitle><jtitle>SIAM journal on computing</jtitle><date>1982-08-01</date><risdate>1982</risdate><volume>11</volume><issue>3</issue><spage>472</spage><epage>492</epage><pages>472-492</pages><issn>0097-5397</issn><eissn>1095-7111</eissn><abstract>The main results of this paper have the following flavor: Given one algorithm for multiplying matrices, there exists another, better, algorithm. A consequence of these results is that $\omega $, the exponent for matrix multiplication, is a limit point, that is, it cannot be realized by any single algorithm. We also use these results to construct a new algorithm which shows that $\omega &lt; 2.495548$.</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/0211038</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0097-5397
ispartof SIAM journal on computing, 1982-08, Vol.11 (3), p.472-492
issn 0097-5397
1095-7111
language eng
recordid cdi_proquest_journals_919995059
source SIAM Journals Online
subjects Algorithms
Construction
Multiplication & division
title On the Asymptotic Complexity of Matrix Multiplication
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T07%3A46%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Asymptotic%20Complexity%20of%20Matrix%20Multiplication&rft.jtitle=SIAM%20journal%20on%20computing&rft.au=Coppersmith,%20D.&rft.date=1982-08-01&rft.volume=11&rft.issue=3&rft.spage=472&rft.epage=492&rft.pages=472-492&rft.issn=0097-5397&rft.eissn=1095-7111&rft_id=info:doi/10.1137/0211038&rft_dat=%3Cproquest_cross%3E2579217961%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=919995059&rft_id=info:pmid/&rfr_iscdi=true