On the Equivalence and Containment Problems for Unambiguous Regular Expressions, Regular Grammars and Finite Automata

The known proofs that the equivalence and containment problems for regular expressions, regular grammars and nondeterministic finite automata are PSPACE-complete [SM] depend upon consideration of highly unambiguous expressions, grammars and automata. Here, we prove that such dependence is inherent....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on computing 1985-08, Vol.14 (3), p.598-611
Hauptverfasser: Stearns, R. E., Hunt III, H. B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 611
container_issue 3
container_start_page 598
container_title SIAM journal on computing
container_volume 14
creator Stearns, R. E.
Hunt III, H. B.
description The known proofs that the equivalence and containment problems for regular expressions, regular grammars and nondeterministic finite automata are PSPACE-complete [SM] depend upon consideration of highly unambiguous expressions, grammars and automata. Here, we prove that such dependence is inherent. Deterministic polynomial-time algorithms are presented for the equivalence and containment problems for unambiguous regular expressions, unambiguous regular grammars and unambiguous finite automata. The algorithms are then extended to ambiguity bounded by a fixed $k$. Our algorithms depend upon several elementary observations on the solutions of systems of homogeneous linear difference equations with constant coefficients and their relationship with the number of derivations of strings of a given length $n$ by a regular grammar.
doi_str_mv 10.1137/0214044
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_919884468</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2578785951</sourcerecordid><originalsourceid>FETCH-LOGICAL-c250t-d26c6e445fbaae866b8d99c0c099025db2b7616ed797099c1e161a0cf322cebe3</originalsourceid><addsrcrecordid>eNo9kE1Lw0AYhBdRsFbxLyxevBjdN9lsssdS2ioUKmLPYbN5U1Oa3XY_RP-90RZPA8PwzDCE3AJ7BMiKJ5YCZ5yfkREwmScFAJyTEWOySPJMFpfkyvstY8A5ZCMSV4aGD6SzQ-w-1Q6NRqpMQ6fWBNWZHk2gr87WO-w9ba2ja6P6uttEGz19w03cKUdnX3uH3nfW-Id_c-FU3yvn_3DzznQB6SQG26ugrslFq3Yeb046Juv57H36nCxXi5fpZJnoNGchaVKhBXKet7VSWApRl42UmmkmJUvzpk7rQoDAppDFYGlAEKCYbrM01VhjNiZ3R-7e2UNEH6qtjc4MlZUEWZaci3II3R9D2lnvHbbV3nXD8u8KWPV7aXW6NPsB2WRpbw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>919884468</pqid></control><display><type>article</type><title>On the Equivalence and Containment Problems for Unambiguous Regular Expressions, Regular Grammars and Finite Automata</title><source>SIAM Journals Online</source><creator>Stearns, R. E. ; Hunt III, H. B.</creator><creatorcontrib>Stearns, R. E. ; Hunt III, H. B.</creatorcontrib><description>The known proofs that the equivalence and containment problems for regular expressions, regular grammars and nondeterministic finite automata are PSPACE-complete [SM] depend upon consideration of highly unambiguous expressions, grammars and automata. Here, we prove that such dependence is inherent. Deterministic polynomial-time algorithms are presented for the equivalence and containment problems for unambiguous regular expressions, unambiguous regular grammars and unambiguous finite automata. The algorithms are then extended to ambiguity bounded by a fixed $k$. Our algorithms depend upon several elementary observations on the solutions of systems of homogeneous linear difference equations with constant coefficients and their relationship with the number of derivations of strings of a given length $n$ by a regular grammar.</description><identifier>ISSN: 0097-5397</identifier><identifier>EISSN: 1095-7111</identifier><identifier>DOI: 10.1137/0214044</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Algorithms ; Ambiguity ; Language</subject><ispartof>SIAM journal on computing, 1985-08, Vol.14 (3), p.598-611</ispartof><rights>[Copyright] © 1985 © Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c250t-d26c6e445fbaae866b8d99c0c099025db2b7616ed797099c1e161a0cf322cebe3</citedby><cites>FETCH-LOGICAL-c250t-d26c6e445fbaae866b8d99c0c099025db2b7616ed797099c1e161a0cf322cebe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3182,27923,27924</link.rule.ids></links><search><creatorcontrib>Stearns, R. E.</creatorcontrib><creatorcontrib>Hunt III, H. B.</creatorcontrib><title>On the Equivalence and Containment Problems for Unambiguous Regular Expressions, Regular Grammars and Finite Automata</title><title>SIAM journal on computing</title><description>The known proofs that the equivalence and containment problems for regular expressions, regular grammars and nondeterministic finite automata are PSPACE-complete [SM] depend upon consideration of highly unambiguous expressions, grammars and automata. Here, we prove that such dependence is inherent. Deterministic polynomial-time algorithms are presented for the equivalence and containment problems for unambiguous regular expressions, unambiguous regular grammars and unambiguous finite automata. The algorithms are then extended to ambiguity bounded by a fixed $k$. Our algorithms depend upon several elementary observations on the solutions of systems of homogeneous linear difference equations with constant coefficients and their relationship with the number of derivations of strings of a given length $n$ by a regular grammar.</description><subject>Algorithms</subject><subject>Ambiguity</subject><subject>Language</subject><issn>0097-5397</issn><issn>1095-7111</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1985</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNo9kE1Lw0AYhBdRsFbxLyxevBjdN9lsssdS2ioUKmLPYbN5U1Oa3XY_RP-90RZPA8PwzDCE3AJ7BMiKJ5YCZ5yfkREwmScFAJyTEWOySPJMFpfkyvstY8A5ZCMSV4aGD6SzQ-w-1Q6NRqpMQ6fWBNWZHk2gr87WO-w9ba2ja6P6uttEGz19w03cKUdnX3uH3nfW-Id_c-FU3yvn_3DzznQB6SQG26ugrslFq3Yeb046Juv57H36nCxXi5fpZJnoNGchaVKhBXKet7VSWApRl42UmmkmJUvzpk7rQoDAppDFYGlAEKCYbrM01VhjNiZ3R-7e2UNEH6qtjc4MlZUEWZaci3II3R9D2lnvHbbV3nXD8u8KWPV7aXW6NPsB2WRpbw</recordid><startdate>19850801</startdate><enddate>19850801</enddate><creator>Stearns, R. E.</creator><creator>Hunt III, H. B.</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0W</scope><scope>U9A</scope></search><sort><creationdate>19850801</creationdate><title>On the Equivalence and Containment Problems for Unambiguous Regular Expressions, Regular Grammars and Finite Automata</title><author>Stearns, R. E. ; Hunt III, H. B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c250t-d26c6e445fbaae866b8d99c0c099025db2b7616ed797099c1e161a0cf322cebe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1985</creationdate><topic>Algorithms</topic><topic>Ambiguity</topic><topic>Language</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stearns, R. E.</creatorcontrib><creatorcontrib>Hunt III, H. B.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career &amp; Technical Education Database</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>SIAM journal on computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stearns, R. E.</au><au>Hunt III, H. B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Equivalence and Containment Problems for Unambiguous Regular Expressions, Regular Grammars and Finite Automata</atitle><jtitle>SIAM journal on computing</jtitle><date>1985-08-01</date><risdate>1985</risdate><volume>14</volume><issue>3</issue><spage>598</spage><epage>611</epage><pages>598-611</pages><issn>0097-5397</issn><eissn>1095-7111</eissn><abstract>The known proofs that the equivalence and containment problems for regular expressions, regular grammars and nondeterministic finite automata are PSPACE-complete [SM] depend upon consideration of highly unambiguous expressions, grammars and automata. Here, we prove that such dependence is inherent. Deterministic polynomial-time algorithms are presented for the equivalence and containment problems for unambiguous regular expressions, unambiguous regular grammars and unambiguous finite automata. The algorithms are then extended to ambiguity bounded by a fixed $k$. Our algorithms depend upon several elementary observations on the solutions of systems of homogeneous linear difference equations with constant coefficients and their relationship with the number of derivations of strings of a given length $n$ by a regular grammar.</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/0214044</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0097-5397
ispartof SIAM journal on computing, 1985-08, Vol.14 (3), p.598-611
issn 0097-5397
1095-7111
language eng
recordid cdi_proquest_journals_919884468
source SIAM Journals Online
subjects Algorithms
Ambiguity
Language
title On the Equivalence and Containment Problems for Unambiguous Regular Expressions, Regular Grammars and Finite Automata
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T17%3A41%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Equivalence%20and%20Containment%20Problems%20for%20Unambiguous%20Regular%20Expressions,%20Regular%20Grammars%20and%20Finite%20Automata&rft.jtitle=SIAM%20journal%20on%20computing&rft.au=Stearns,%20R.%20E.&rft.date=1985-08-01&rft.volume=14&rft.issue=3&rft.spage=598&rft.epage=611&rft.pages=598-611&rft.issn=0097-5397&rft.eissn=1095-7111&rft_id=info:doi/10.1137/0214044&rft_dat=%3Cproquest_cross%3E2578785951%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=919884468&rft_id=info:pmid/&rfr_iscdi=true