On the computational complexity of algebra on lattices

We study the computational complexity of equivalence and minimization problems for expressions on many different lattices including each finite lattice and each distributive lattice. A general efficient expressibility condition $C$ on a lattice is presented such that 1. The equivalence problem is co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on computing 1987-02, Vol.16 (1), p.129-148
Hauptverfasser: HUNT, H. B. III, ROSENKRANTZ, D. J, BLONIARZ, P. A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 148
container_issue 1
container_start_page 129
container_title SIAM journal on computing
container_volume 16
creator HUNT, H. B. III
ROSENKRANTZ, D. J
BLONIARZ, P. A
description We study the computational complexity of equivalence and minimization problems for expressions on many different lattices including each finite lattice and each distributive lattice. A general efficient expressibility condition $C$ on a lattice is presented such that 1. The equivalence problem is co$NP$ hard for constant-free expressions on any lattice with at least two elements that satisfies condition $C$. Each finite or distributive lattice is shown to satisfy condition $C$. Moreover, if a lattice $\mathcal{L}$ satisfies condition $C$ and $ \equiv $ is a congruence relation on $\mathcal{L}$, then ${\mathcal{L} / \equiv }$ also satisfies condition $C$. Several additional results are also presented. These results include the following: 2. In contrast to 1, the equivalence and operator minimization problems are solvable deterministically in polynomial time for disjunctive normal form and conjunctive normal form expressions on any lattice and for constant-free expressions on any free lattice with at least three generators: 3. Let $\mathcal{L}$ be a lattice. Then, the operator minimization problem and various approximate operator minimization problems for expressions on $\mathcal{L}$ are as hard as the problem of determining, for expressions $F$ and $G$ on $\mathcal{L}$, if $F \leqq G$.
doi_str_mv 10.1137/0216011
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_919838409</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2578653991</sourcerecordid><originalsourceid>FETCH-LOGICAL-c279t-51a0371ae339f068a9eee28740ab20454a2cab106f8d1aa708135344f51e67483</originalsourceid><addsrcrecordid>eNo9kE1LAzEURYMoWKv4FwYRXI2-Ny8zSZZS_IJCN7oeXmOiU6aTmmTA_nurLa4uFw6HyxXiEuEWkdQdVNgA4pGYIJi6VIh4LCYARpU1GXUqzlJaAaCUSBPRLIYif7rChvVmzJy7MHD_13r33eVtEXzB_YdbRi7CUPScc2ddOhcnnvvkLg45FW-PD6-z53K-eHqZ3c9LWymTyxoZSCE7IuOh0Wycc5VWEnhZgawlV5aXCI3X78isQCPVJKWv0TVKapqKq713E8PX6FJuV2GMu4mpNWg0aQlmB93sIRtDStH5dhO7Ncdti9D-ftIePtmR1wcdJ8u9jzzYLv3jupJKE9EPxJRdhQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>919838409</pqid></control><display><type>article</type><title>On the computational complexity of algebra on lattices</title><source>SIAM Journals Online</source><creator>HUNT, H. B. III ; ROSENKRANTZ, D. J ; BLONIARZ, P. A</creator><creatorcontrib>HUNT, H. B. III ; ROSENKRANTZ, D. J ; BLONIARZ, P. A</creatorcontrib><description>We study the computational complexity of equivalence and minimization problems for expressions on many different lattices including each finite lattice and each distributive lattice. A general efficient expressibility condition $C$ on a lattice is presented such that 1. The equivalence problem is co$NP$ hard for constant-free expressions on any lattice with at least two elements that satisfies condition $C$. Each finite or distributive lattice is shown to satisfy condition $C$. Moreover, if a lattice $\mathcal{L}$ satisfies condition $C$ and $ \equiv $ is a congruence relation on $\mathcal{L}$, then ${\mathcal{L} / \equiv }$ also satisfies condition $C$. Several additional results are also presented. These results include the following: 2. In contrast to 1, the equivalence and operator minimization problems are solvable deterministically in polynomial time for disjunctive normal form and conjunctive normal form expressions on any lattice and for constant-free expressions on any free lattice with at least three generators: 3. Let $\mathcal{L}$ be a lattice. Then, the operator minimization problem and various approximate operator minimization problems for expressions on $\mathcal{L}$ are as hard as the problem of determining, for expressions $F$ and $G$ on $\mathcal{L}$, if $F \leqq G$.</description><identifier>ISSN: 0097-5397</identifier><identifier>EISSN: 1095-7111</identifier><identifier>DOI: 10.1137/0216011</identifier><language>eng</language><publisher>Philadelphia, PA: Society for Industrial and Applied Mathematics</publisher><subject>Algebra ; Algorithmics. Computability. Computer arithmetics ; Applied sciences ; Computer science; control theory; systems ; Exact sciences and technology ; Theoretical computing</subject><ispartof>SIAM journal on computing, 1987-02, Vol.16 (1), p.129-148</ispartof><rights>1987 INIST-CNRS</rights><rights>[Copyright] © 1987 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c279t-51a0371ae339f068a9eee28740ab20454a2cab106f8d1aa708135344f51e67483</citedby><cites>FETCH-LOGICAL-c279t-51a0371ae339f068a9eee28740ab20454a2cab106f8d1aa708135344f51e67483</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3182,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=8247833$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>HUNT, H. B. III</creatorcontrib><creatorcontrib>ROSENKRANTZ, D. J</creatorcontrib><creatorcontrib>BLONIARZ, P. A</creatorcontrib><title>On the computational complexity of algebra on lattices</title><title>SIAM journal on computing</title><description>We study the computational complexity of equivalence and minimization problems for expressions on many different lattices including each finite lattice and each distributive lattice. A general efficient expressibility condition $C$ on a lattice is presented such that 1. The equivalence problem is co$NP$ hard for constant-free expressions on any lattice with at least two elements that satisfies condition $C$. Each finite or distributive lattice is shown to satisfy condition $C$. Moreover, if a lattice $\mathcal{L}$ satisfies condition $C$ and $ \equiv $ is a congruence relation on $\mathcal{L}$, then ${\mathcal{L} / \equiv }$ also satisfies condition $C$. Several additional results are also presented. These results include the following: 2. In contrast to 1, the equivalence and operator minimization problems are solvable deterministically in polynomial time for disjunctive normal form and conjunctive normal form expressions on any lattice and for constant-free expressions on any free lattice with at least three generators: 3. Let $\mathcal{L}$ be a lattice. Then, the operator minimization problem and various approximate operator minimization problems for expressions on $\mathcal{L}$ are as hard as the problem of determining, for expressions $F$ and $G$ on $\mathcal{L}$, if $F \leqq G$.</description><subject>Algebra</subject><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Theoretical computing</subject><issn>0097-5397</issn><issn>1095-7111</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1987</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNo9kE1LAzEURYMoWKv4FwYRXI2-Ny8zSZZS_IJCN7oeXmOiU6aTmmTA_nurLa4uFw6HyxXiEuEWkdQdVNgA4pGYIJi6VIh4LCYARpU1GXUqzlJaAaCUSBPRLIYif7rChvVmzJy7MHD_13r33eVtEXzB_YdbRi7CUPScc2ddOhcnnvvkLg45FW-PD6-z53K-eHqZ3c9LWymTyxoZSCE7IuOh0Wycc5VWEnhZgawlV5aXCI3X78isQCPVJKWv0TVKapqKq713E8PX6FJuV2GMu4mpNWg0aQlmB93sIRtDStH5dhO7Ncdti9D-ftIePtmR1wcdJ8u9jzzYLv3jupJKE9EPxJRdhQ</recordid><startdate>19870201</startdate><enddate>19870201</enddate><creator>HUNT, H. B. III</creator><creator>ROSENKRANTZ, D. J</creator><creator>BLONIARZ, P. A</creator><general>Society for Industrial and Applied Mathematics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0W</scope><scope>U9A</scope></search><sort><creationdate>19870201</creationdate><title>On the computational complexity of algebra on lattices</title><author>HUNT, H. B. III ; ROSENKRANTZ, D. J ; BLONIARZ, P. A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c279t-51a0371ae339f068a9eee28740ab20454a2cab106f8d1aa708135344f51e67483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1987</creationdate><topic>Algebra</topic><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>HUNT, H. B. III</creatorcontrib><creatorcontrib>ROSENKRANTZ, D. J</creatorcontrib><creatorcontrib>BLONIARZ, P. A</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career &amp; Technical Education Database</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>SIAM journal on computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>HUNT, H. B. III</au><au>ROSENKRANTZ, D. J</au><au>BLONIARZ, P. A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the computational complexity of algebra on lattices</atitle><jtitle>SIAM journal on computing</jtitle><date>1987-02-01</date><risdate>1987</risdate><volume>16</volume><issue>1</issue><spage>129</spage><epage>148</epage><pages>129-148</pages><issn>0097-5397</issn><eissn>1095-7111</eissn><abstract>We study the computational complexity of equivalence and minimization problems for expressions on many different lattices including each finite lattice and each distributive lattice. A general efficient expressibility condition $C$ on a lattice is presented such that 1. The equivalence problem is co$NP$ hard for constant-free expressions on any lattice with at least two elements that satisfies condition $C$. Each finite or distributive lattice is shown to satisfy condition $C$. Moreover, if a lattice $\mathcal{L}$ satisfies condition $C$ and $ \equiv $ is a congruence relation on $\mathcal{L}$, then ${\mathcal{L} / \equiv }$ also satisfies condition $C$. Several additional results are also presented. These results include the following: 2. In contrast to 1, the equivalence and operator minimization problems are solvable deterministically in polynomial time for disjunctive normal form and conjunctive normal form expressions on any lattice and for constant-free expressions on any free lattice with at least three generators: 3. Let $\mathcal{L}$ be a lattice. Then, the operator minimization problem and various approximate operator minimization problems for expressions on $\mathcal{L}$ are as hard as the problem of determining, for expressions $F$ and $G$ on $\mathcal{L}$, if $F \leqq G$.</abstract><cop>Philadelphia, PA</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/0216011</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0097-5397
ispartof SIAM journal on computing, 1987-02, Vol.16 (1), p.129-148
issn 0097-5397
1095-7111
language eng
recordid cdi_proquest_journals_919838409
source SIAM Journals Online
subjects Algebra
Algorithmics. Computability. Computer arithmetics
Applied sciences
Computer science
control theory
systems
Exact sciences and technology
Theoretical computing
title On the computational complexity of algebra on lattices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T01%3A10%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20computational%20complexity%20of%20algebra%20on%20lattices&rft.jtitle=SIAM%20journal%20on%20computing&rft.au=HUNT,%20H.%20B.%20III&rft.date=1987-02-01&rft.volume=16&rft.issue=1&rft.spage=129&rft.epage=148&rft.pages=129-148&rft.issn=0097-5397&rft.eissn=1095-7111&rft_id=info:doi/10.1137/0216011&rft_dat=%3Cproquest_cross%3E2578653991%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=919838409&rft_id=info:pmid/&rfr_iscdi=true