On tally relativizations of BP-complexity classes

It is known that $AM = BP \cdot NP$. Babai [Proc. 17th Annual ACM Symposium Theory of Computing, 1985, pp. 421-429] and Goldwasser and Sipser [Proc.18th Annual ACM Symposium on Theory of Computing, 1986, pp. 59-68] asked whether $BP \cdot NP{\text{ for almost every set }}B,A \in NP(B)\}$ is equal to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on computing 1989-06, Vol.18 (3), p.449-462
Hauptverfasser: SHOUWEN TANG, WATANABE, O
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 462
container_issue 3
container_start_page 449
container_title SIAM journal on computing
container_volume 18
creator SHOUWEN TANG
WATANABE, O
description It is known that $AM = BP \cdot NP$. Babai [Proc. 17th Annual ACM Symposium Theory of Computing, 1985, pp. 421-429] and Goldwasser and Sipser [Proc.18th Annual ACM Symposium on Theory of Computing, 1986, pp. 59-68] asked whether $BP \cdot NP{\text{ for almost every set }}B,A \in NP(B)\}$ is equal to $\{ A|$ . This question is still open. In this paper it is shown that (1) for every $k \geqq 0$ and every set $A,A \in BP \cdot \Sigma _k^P $ if and only if for almost every tally set , and (2) for every $k \geqq 0$ and almost every tally set $T,BP \cdot \Sigma _k^P (T) = \Sigma _k^P (T)$. From them are obtained some properties of the "BP-polynomial-time hierarchy" studied by Schoning [Proc. 2nd Annual Conference on Structure in Complexity Theory, 1987, pp. 2-8]. That is, the $BP$-polynomial-time hierarchy has the properties that are precisely parallel to those of the polynomial-time hierarchy. The proofs of these results provide examples of the use of properties of complexity classes specified by relativizations to obtain properties of unrelativized complexity classes.
doi_str_mv 10.1137/0218031
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_919783022</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2578265131</sourcerecordid><originalsourceid>FETCH-LOGICAL-c279t-caa6f031188165cea2a750ca3fa4efdba93a3a0d0d0807733bb89513c7faf25a3</originalsourceid><addsrcrecordid>eNo9kE9Lw0AQxRdRMFbxKwQRPEVnMkk2e9TiPyjUg57DZLsLKduk7qZi_PSutMjAm8uP9x5PiEuEW0SSd5BjDYRHIkFQZSYR8VgkAEpmJSl5Ks5CWANgUSAlApd9OrJzU-qN47H76n6iDn1IB5s-vGV62Gyd-e7GKdWOQzDhXJxYdsFcHP5MfDw9vs9fssXy-XV-v8h0LtWYaebKxh5Y11iV2nDOsgTNZLkwdtWyIiaGVbwapCRq21qVSFpatnnJNBNXe9-tHz53JozNetj5PkY2CpWsCfI8Qjd7SPshBG9ss_Xdhv3UIDR_czSHOSJ5fbDjoNlZz73uwj9eVYWMOP0CeEldJg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>919783022</pqid></control><display><type>article</type><title>On tally relativizations of BP-complexity classes</title><source>SIAM Journals Online</source><creator>SHOUWEN TANG ; WATANABE, O</creator><creatorcontrib>SHOUWEN TANG ; WATANABE, O</creatorcontrib><description>It is known that $AM = BP \cdot NP$. Babai [Proc. 17th Annual ACM Symposium Theory of Computing, 1985, pp. 421-429] and Goldwasser and Sipser [Proc.18th Annual ACM Symposium on Theory of Computing, 1986, pp. 59-68] asked whether $BP \cdot NP{\text{ for almost every set }}B,A \in NP(B)\}$ is equal to $\{ A|$ . This question is still open. In this paper it is shown that (1) for every $k \geqq 0$ and every set $A,A \in BP \cdot \Sigma _k^P $ if and only if for almost every tally set , and (2) for every $k \geqq 0$ and almost every tally set $T,BP \cdot \Sigma _k^P (T) = \Sigma _k^P (T)$. From them are obtained some properties of the "BP-polynomial-time hierarchy" studied by Schoning [Proc. 2nd Annual Conference on Structure in Complexity Theory, 1987, pp. 2-8]. That is, the $BP$-polynomial-time hierarchy has the properties that are precisely parallel to those of the polynomial-time hierarchy. The proofs of these results provide examples of the use of properties of complexity classes specified by relativizations to obtain properties of unrelativized complexity classes.</description><identifier>ISSN: 0097-5397</identifier><identifier>EISSN: 1095-7111</identifier><identifier>DOI: 10.1137/0218031</identifier><language>eng</language><publisher>Philadelphia, PA: Society for Industrial and Applied Mathematics</publisher><subject>Applied sciences ; Complexity theory ; Computer science ; Computer science; control theory; systems ; Exact sciences and technology ; Language ; Language theory and syntactical analysis ; Theoretical computing</subject><ispartof>SIAM journal on computing, 1989-06, Vol.18 (3), p.449-462</ispartof><rights>1990 INIST-CNRS</rights><rights>[Copyright] © 1989 © Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c279t-caa6f031188165cea2a750ca3fa4efdba93a3a0d0d0807733bb89513c7faf25a3</citedby><cites>FETCH-LOGICAL-c279t-caa6f031188165cea2a750ca3fa4efdba93a3a0d0d0807733bb89513c7faf25a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3171,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=6647137$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>SHOUWEN TANG</creatorcontrib><creatorcontrib>WATANABE, O</creatorcontrib><title>On tally relativizations of BP-complexity classes</title><title>SIAM journal on computing</title><description>It is known that $AM = BP \cdot NP$. Babai [Proc. 17th Annual ACM Symposium Theory of Computing, 1985, pp. 421-429] and Goldwasser and Sipser [Proc.18th Annual ACM Symposium on Theory of Computing, 1986, pp. 59-68] asked whether $BP \cdot NP{\text{ for almost every set }}B,A \in NP(B)\}$ is equal to $\{ A|$ . This question is still open. In this paper it is shown that (1) for every $k \geqq 0$ and every set $A,A \in BP \cdot \Sigma _k^P $ if and only if for almost every tally set , and (2) for every $k \geqq 0$ and almost every tally set $T,BP \cdot \Sigma _k^P (T) = \Sigma _k^P (T)$. From them are obtained some properties of the "BP-polynomial-time hierarchy" studied by Schoning [Proc. 2nd Annual Conference on Structure in Complexity Theory, 1987, pp. 2-8]. That is, the $BP$-polynomial-time hierarchy has the properties that are precisely parallel to those of the polynomial-time hierarchy. The proofs of these results provide examples of the use of properties of complexity classes specified by relativizations to obtain properties of unrelativized complexity classes.</description><subject>Applied sciences</subject><subject>Complexity theory</subject><subject>Computer science</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Language</subject><subject>Language theory and syntactical analysis</subject><subject>Theoretical computing</subject><issn>0097-5397</issn><issn>1095-7111</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1989</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNo9kE9Lw0AQxRdRMFbxKwQRPEVnMkk2e9TiPyjUg57DZLsLKduk7qZi_PSutMjAm8uP9x5PiEuEW0SSd5BjDYRHIkFQZSYR8VgkAEpmJSl5Ks5CWANgUSAlApd9OrJzU-qN47H76n6iDn1IB5s-vGV62Gyd-e7GKdWOQzDhXJxYdsFcHP5MfDw9vs9fssXy-XV-v8h0LtWYaebKxh5Y11iV2nDOsgTNZLkwdtWyIiaGVbwapCRq21qVSFpatnnJNBNXe9-tHz53JozNetj5PkY2CpWsCfI8Qjd7SPshBG9ss_Xdhv3UIDR_czSHOSJ5fbDjoNlZz73uwj9eVYWMOP0CeEldJg</recordid><startdate>19890601</startdate><enddate>19890601</enddate><creator>SHOUWEN TANG</creator><creator>WATANABE, O</creator><general>Society for Industrial and Applied Mathematics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0W</scope><scope>U9A</scope></search><sort><creationdate>19890601</creationdate><title>On tally relativizations of BP-complexity classes</title><author>SHOUWEN TANG ; WATANABE, O</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c279t-caa6f031188165cea2a750ca3fa4efdba93a3a0d0d0807733bb89513c7faf25a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1989</creationdate><topic>Applied sciences</topic><topic>Complexity theory</topic><topic>Computer science</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Language</topic><topic>Language theory and syntactical analysis</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>SHOUWEN TANG</creatorcontrib><creatorcontrib>WATANABE, O</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career &amp; Technical Education Database</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>SIAM journal on computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>SHOUWEN TANG</au><au>WATANABE, O</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On tally relativizations of BP-complexity classes</atitle><jtitle>SIAM journal on computing</jtitle><date>1989-06-01</date><risdate>1989</risdate><volume>18</volume><issue>3</issue><spage>449</spage><epage>462</epage><pages>449-462</pages><issn>0097-5397</issn><eissn>1095-7111</eissn><abstract>It is known that $AM = BP \cdot NP$. Babai [Proc. 17th Annual ACM Symposium Theory of Computing, 1985, pp. 421-429] and Goldwasser and Sipser [Proc.18th Annual ACM Symposium on Theory of Computing, 1986, pp. 59-68] asked whether $BP \cdot NP{\text{ for almost every set }}B,A \in NP(B)\}$ is equal to $\{ A|$ . This question is still open. In this paper it is shown that (1) for every $k \geqq 0$ and every set $A,A \in BP \cdot \Sigma _k^P $ if and only if for almost every tally set , and (2) for every $k \geqq 0$ and almost every tally set $T,BP \cdot \Sigma _k^P (T) = \Sigma _k^P (T)$. From them are obtained some properties of the "BP-polynomial-time hierarchy" studied by Schoning [Proc. 2nd Annual Conference on Structure in Complexity Theory, 1987, pp. 2-8]. That is, the $BP$-polynomial-time hierarchy has the properties that are precisely parallel to those of the polynomial-time hierarchy. The proofs of these results provide examples of the use of properties of complexity classes specified by relativizations to obtain properties of unrelativized complexity classes.</abstract><cop>Philadelphia, PA</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/0218031</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0097-5397
ispartof SIAM journal on computing, 1989-06, Vol.18 (3), p.449-462
issn 0097-5397
1095-7111
language eng
recordid cdi_proquest_journals_919783022
source SIAM Journals Online
subjects Applied sciences
Complexity theory
Computer science
Computer science
control theory
systems
Exact sciences and technology
Language
Language theory and syntactical analysis
Theoretical computing
title On tally relativizations of BP-complexity classes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T19%3A42%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20tally%20relativizations%20of%20BP-complexity%20classes&rft.jtitle=SIAM%20journal%20on%20computing&rft.au=SHOUWEN%20TANG&rft.date=1989-06-01&rft.volume=18&rft.issue=3&rft.spage=449&rft.epage=462&rft.pages=449-462&rft.issn=0097-5397&rft.eissn=1095-7111&rft_id=info:doi/10.1137/0218031&rft_dat=%3Cproquest_cross%3E2578265131%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=919783022&rft_id=info:pmid/&rfr_iscdi=true