On tally relativizations of BP-complexity classes
It is known that $AM = BP \cdot NP$. Babai [Proc. 17th Annual ACM Symposium Theory of Computing, 1985, pp. 421-429] and Goldwasser and Sipser [Proc.18th Annual ACM Symposium on Theory of Computing, 1986, pp. 59-68] asked whether $BP \cdot NP{\text{ for almost every set }}B,A \in NP(B)\}$ is equal to...
Gespeichert in:
Veröffentlicht in: | SIAM journal on computing 1989-06, Vol.18 (3), p.449-462 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 462 |
---|---|
container_issue | 3 |
container_start_page | 449 |
container_title | SIAM journal on computing |
container_volume | 18 |
creator | SHOUWEN TANG WATANABE, O |
description | It is known that $AM = BP \cdot NP$. Babai [Proc. 17th Annual ACM Symposium Theory of Computing, 1985, pp. 421-429] and Goldwasser and Sipser [Proc.18th Annual ACM Symposium on Theory of Computing, 1986, pp. 59-68] asked whether $BP \cdot NP{\text{ for almost every set }}B,A \in NP(B)\}$ is equal to $\{ A|$ . This question is still open. In this paper it is shown that (1) for every $k \geqq 0$ and every set $A,A \in BP \cdot \Sigma _k^P $ if and only if for almost every tally set , and (2) for every $k \geqq 0$ and almost every tally set $T,BP \cdot \Sigma _k^P (T) = \Sigma _k^P (T)$. From them are obtained some properties of the "BP-polynomial-time hierarchy" studied by Schoning [Proc. 2nd Annual Conference on Structure in Complexity Theory, 1987, pp. 2-8]. That is, the $BP$-polynomial-time hierarchy has the properties that are precisely parallel to those of the polynomial-time hierarchy. The proofs of these results provide examples of the use of properties of complexity classes specified by relativizations to obtain properties of unrelativized complexity classes. |
doi_str_mv | 10.1137/0218031 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_919783022</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2578265131</sourcerecordid><originalsourceid>FETCH-LOGICAL-c279t-caa6f031188165cea2a750ca3fa4efdba93a3a0d0d0807733bb89513c7faf25a3</originalsourceid><addsrcrecordid>eNo9kE9Lw0AQxRdRMFbxKwQRPEVnMkk2e9TiPyjUg57DZLsLKduk7qZi_PSutMjAm8uP9x5PiEuEW0SSd5BjDYRHIkFQZSYR8VgkAEpmJSl5Ks5CWANgUSAlApd9OrJzU-qN47H76n6iDn1IB5s-vGV62Gyd-e7GKdWOQzDhXJxYdsFcHP5MfDw9vs9fssXy-XV-v8h0LtWYaebKxh5Y11iV2nDOsgTNZLkwdtWyIiaGVbwapCRq21qVSFpatnnJNBNXe9-tHz53JozNetj5PkY2CpWsCfI8Qjd7SPshBG9ss_Xdhv3UIDR_czSHOSJ5fbDjoNlZz73uwj9eVYWMOP0CeEldJg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>919783022</pqid></control><display><type>article</type><title>On tally relativizations of BP-complexity classes</title><source>SIAM Journals Online</source><creator>SHOUWEN TANG ; WATANABE, O</creator><creatorcontrib>SHOUWEN TANG ; WATANABE, O</creatorcontrib><description>It is known that $AM = BP \cdot NP$. Babai [Proc. 17th Annual ACM Symposium Theory of Computing, 1985, pp. 421-429] and Goldwasser and Sipser [Proc.18th Annual ACM Symposium on Theory of Computing, 1986, pp. 59-68] asked whether $BP \cdot NP{\text{ for almost every set }}B,A \in NP(B)\}$ is equal to $\{ A|$ . This question is still open. In this paper it is shown that (1) for every $k \geqq 0$ and every set $A,A \in BP \cdot \Sigma _k^P $ if and only if for almost every tally set , and (2) for every $k \geqq 0$ and almost every tally set $T,BP \cdot \Sigma _k^P (T) = \Sigma _k^P (T)$. From them are obtained some properties of the "BP-polynomial-time hierarchy" studied by Schoning [Proc. 2nd Annual Conference on Structure in Complexity Theory, 1987, pp. 2-8]. That is, the $BP$-polynomial-time hierarchy has the properties that are precisely parallel to those of the polynomial-time hierarchy. The proofs of these results provide examples of the use of properties of complexity classes specified by relativizations to obtain properties of unrelativized complexity classes.</description><identifier>ISSN: 0097-5397</identifier><identifier>EISSN: 1095-7111</identifier><identifier>DOI: 10.1137/0218031</identifier><language>eng</language><publisher>Philadelphia, PA: Society for Industrial and Applied Mathematics</publisher><subject>Applied sciences ; Complexity theory ; Computer science ; Computer science; control theory; systems ; Exact sciences and technology ; Language ; Language theory and syntactical analysis ; Theoretical computing</subject><ispartof>SIAM journal on computing, 1989-06, Vol.18 (3), p.449-462</ispartof><rights>1990 INIST-CNRS</rights><rights>[Copyright] © 1989 © Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c279t-caa6f031188165cea2a750ca3fa4efdba93a3a0d0d0807733bb89513c7faf25a3</citedby><cites>FETCH-LOGICAL-c279t-caa6f031188165cea2a750ca3fa4efdba93a3a0d0d0807733bb89513c7faf25a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3171,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=6647137$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>SHOUWEN TANG</creatorcontrib><creatorcontrib>WATANABE, O</creatorcontrib><title>On tally relativizations of BP-complexity classes</title><title>SIAM journal on computing</title><description>It is known that $AM = BP \cdot NP$. Babai [Proc. 17th Annual ACM Symposium Theory of Computing, 1985, pp. 421-429] and Goldwasser and Sipser [Proc.18th Annual ACM Symposium on Theory of Computing, 1986, pp. 59-68] asked whether $BP \cdot NP{\text{ for almost every set }}B,A \in NP(B)\}$ is equal to $\{ A|$ . This question is still open. In this paper it is shown that (1) for every $k \geqq 0$ and every set $A,A \in BP \cdot \Sigma _k^P $ if and only if for almost every tally set , and (2) for every $k \geqq 0$ and almost every tally set $T,BP \cdot \Sigma _k^P (T) = \Sigma _k^P (T)$. From them are obtained some properties of the "BP-polynomial-time hierarchy" studied by Schoning [Proc. 2nd Annual Conference on Structure in Complexity Theory, 1987, pp. 2-8]. That is, the $BP$-polynomial-time hierarchy has the properties that are precisely parallel to those of the polynomial-time hierarchy. The proofs of these results provide examples of the use of properties of complexity classes specified by relativizations to obtain properties of unrelativized complexity classes.</description><subject>Applied sciences</subject><subject>Complexity theory</subject><subject>Computer science</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Language</subject><subject>Language theory and syntactical analysis</subject><subject>Theoretical computing</subject><issn>0097-5397</issn><issn>1095-7111</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1989</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNo9kE9Lw0AQxRdRMFbxKwQRPEVnMkk2e9TiPyjUg57DZLsLKduk7qZi_PSutMjAm8uP9x5PiEuEW0SSd5BjDYRHIkFQZSYR8VgkAEpmJSl5Ks5CWANgUSAlApd9OrJzU-qN47H76n6iDn1IB5s-vGV62Gyd-e7GKdWOQzDhXJxYdsFcHP5MfDw9vs9fssXy-XV-v8h0LtWYaebKxh5Y11iV2nDOsgTNZLkwdtWyIiaGVbwapCRq21qVSFpatnnJNBNXe9-tHz53JozNetj5PkY2CpWsCfI8Qjd7SPshBG9ss_Xdhv3UIDR_czSHOSJ5fbDjoNlZz73uwj9eVYWMOP0CeEldJg</recordid><startdate>19890601</startdate><enddate>19890601</enddate><creator>SHOUWEN TANG</creator><creator>WATANABE, O</creator><general>Society for Industrial and Applied Mathematics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0W</scope><scope>U9A</scope></search><sort><creationdate>19890601</creationdate><title>On tally relativizations of BP-complexity classes</title><author>SHOUWEN TANG ; WATANABE, O</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c279t-caa6f031188165cea2a750ca3fa4efdba93a3a0d0d0807733bb89513c7faf25a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1989</creationdate><topic>Applied sciences</topic><topic>Complexity theory</topic><topic>Computer science</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Language</topic><topic>Language theory and syntactical analysis</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>SHOUWEN TANG</creatorcontrib><creatorcontrib>WATANABE, O</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career & Technical Education Database</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>SIAM journal on computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>SHOUWEN TANG</au><au>WATANABE, O</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On tally relativizations of BP-complexity classes</atitle><jtitle>SIAM journal on computing</jtitle><date>1989-06-01</date><risdate>1989</risdate><volume>18</volume><issue>3</issue><spage>449</spage><epage>462</epage><pages>449-462</pages><issn>0097-5397</issn><eissn>1095-7111</eissn><abstract>It is known that $AM = BP \cdot NP$. Babai [Proc. 17th Annual ACM Symposium Theory of Computing, 1985, pp. 421-429] and Goldwasser and Sipser [Proc.18th Annual ACM Symposium on Theory of Computing, 1986, pp. 59-68] asked whether $BP \cdot NP{\text{ for almost every set }}B,A \in NP(B)\}$ is equal to $\{ A|$ . This question is still open. In this paper it is shown that (1) for every $k \geqq 0$ and every set $A,A \in BP \cdot \Sigma _k^P $ if and only if for almost every tally set , and (2) for every $k \geqq 0$ and almost every tally set $T,BP \cdot \Sigma _k^P (T) = \Sigma _k^P (T)$. From them are obtained some properties of the "BP-polynomial-time hierarchy" studied by Schoning [Proc. 2nd Annual Conference on Structure in Complexity Theory, 1987, pp. 2-8]. That is, the $BP$-polynomial-time hierarchy has the properties that are precisely parallel to those of the polynomial-time hierarchy. The proofs of these results provide examples of the use of properties of complexity classes specified by relativizations to obtain properties of unrelativized complexity classes.</abstract><cop>Philadelphia, PA</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/0218031</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0097-5397 |
ispartof | SIAM journal on computing, 1989-06, Vol.18 (3), p.449-462 |
issn | 0097-5397 1095-7111 |
language | eng |
recordid | cdi_proquest_journals_919783022 |
source | SIAM Journals Online |
subjects | Applied sciences Complexity theory Computer science Computer science control theory systems Exact sciences and technology Language Language theory and syntactical analysis Theoretical computing |
title | On tally relativizations of BP-complexity classes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T19%3A42%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20tally%20relativizations%20of%20BP-complexity%20classes&rft.jtitle=SIAM%20journal%20on%20computing&rft.au=SHOUWEN%20TANG&rft.date=1989-06-01&rft.volume=18&rft.issue=3&rft.spage=449&rft.epage=462&rft.pages=449-462&rft.issn=0097-5397&rft.eissn=1095-7111&rft_id=info:doi/10.1137/0218031&rft_dat=%3Cproquest_cross%3E2578265131%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=919783022&rft_id=info:pmid/&rfr_iscdi=true |