Addition machines
It is possible to compute gcd $(x, y)$ efficiently with only $O(\log xy)$ additions and subtractions, when three arithmetic registers are available but not when there are only two. Several other functions, such as $x^y \bmod z$, are also efficiently computable in a small number of registers, using o...
Gespeichert in:
Veröffentlicht in: | SIAM journal on computing 1990-04, Vol.19 (2), p.329-340 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | It is possible to compute gcd $(x, y)$ efficiently with only $O(\log xy)$ additions and subtractions, when three arithmetic registers are available but not when there are only two. Several other functions, such as $x^y \bmod z$, are also efficiently computable in a small number of registers, using only addition, subtraction, and comparison. |
---|---|
ISSN: | 0097-5397 1095-7111 |
DOI: | 10.1137/0219022 |