A semiring on convex polygons and zero-sum cycle problems

Two natural operations on the set of convex polygons are shown to form a closed semiring; the two operations are vector summation and convex hull of the union. Various properties of these operations are investigated. Kleene's algorithm applied to this closed semiring solves the problem of deter...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on computing 1990-10, Vol.19 (5), p.883-901
Hauptverfasser: IWANO, K, STEIGLITZ, K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 901
container_issue 5
container_start_page 883
container_title SIAM journal on computing
container_volume 19
creator IWANO, K
STEIGLITZ, K
description Two natural operations on the set of convex polygons are shown to form a closed semiring; the two operations are vector summation and convex hull of the union. Various properties of these operations are investigated. Kleene's algorithm applied to this closed semiring solves the problem of determining whether a directed graph with two-dimensional labels has a zero-sum cycle or not. This algorithm is shown to run in polynomial time in the special cases of graphs with one-dimensional labels, BTTSP (Backedged Two-Terminal Series-Parallel) graphs, and graphs with bounded labels. The undirected zero-sum cycle problem and the zero-sum simple cycle problem are also investigated.
doi_str_mv 10.1137/0219061
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_919763721</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2578174901</sourcerecordid><originalsourceid>FETCH-LOGICAL-c280t-3bae2718654c50af38a0f6d0eef1b67bbcfb0a3e1798f185fc3c81c2f17a94ec3</originalsourceid><addsrcrecordid>eNpFkF1LwzAUhoMoWKf4F4IgXlXPaZqmuRzDLxh4o9clPUtGR5vMZBPrr7eygVfvzcP7wMPYNcI9olAPUKCGCk9YhqBlrhDxlGUAWuVSaHXOLlLaAGBZosiYnvNkhy52fs2D5xT8l_3m29CP6-ATN37Ff2wMedoPnEbqLd_G0PZ2SJfszJk-2avjztjH0-P74iVfvj2_LubLnIoadrlojS0U1pUsSYJxojbgqhVY67CtVNuSa8EIi0rXDmvpSFCNVDhURpeWxIzdHH4n8efepl2zCfvoJ2WjUatKqAIn6O4AUQwpReuabewGE8cGofnL0hyzTOTt8c4kMr2LxlOX_nEtyymOFL9GHWBf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>919763721</pqid></control><display><type>article</type><title>A semiring on convex polygons and zero-sum cycle problems</title><source>SIAM Journals Online</source><creator>IWANO, K ; STEIGLITZ, K</creator><creatorcontrib>IWANO, K ; STEIGLITZ, K</creatorcontrib><description>Two natural operations on the set of convex polygons are shown to form a closed semiring; the two operations are vector summation and convex hull of the union. Various properties of these operations are investigated. Kleene's algorithm applied to this closed semiring solves the problem of determining whether a directed graph with two-dimensional labels has a zero-sum cycle or not. This algorithm is shown to run in polynomial time in the special cases of graphs with one-dimensional labels, BTTSP (Backedged Two-Terminal Series-Parallel) graphs, and graphs with bounded labels. The undirected zero-sum cycle problem and the zero-sum simple cycle problem are also investigated.</description><identifier>ISSN: 0097-5397</identifier><identifier>EISSN: 1095-7111</identifier><identifier>DOI: 10.1137/0219061</identifier><language>eng</language><publisher>Philadelphia, PA: Society for Industrial and Applied Mathematics</publisher><subject>Algorithms ; Combinatorics ; Combinatorics. Ordered structures ; Exact sciences and technology ; Graph theory ; Graphs ; Linear programming ; Mathematics ; Polygons ; Sciences and techniques of general use</subject><ispartof>SIAM journal on computing, 1990-10, Vol.19 (5), p.883-901</ispartof><rights>1991 INIST-CNRS</rights><rights>[Copyright] © 1990 © Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c280t-3bae2718654c50af38a0f6d0eef1b67bbcfb0a3e1798f185fc3c81c2f17a94ec3</citedby><cites>FETCH-LOGICAL-c280t-3bae2718654c50af38a0f6d0eef1b67bbcfb0a3e1798f185fc3c81c2f17a94ec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3171,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19540015$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>IWANO, K</creatorcontrib><creatorcontrib>STEIGLITZ, K</creatorcontrib><title>A semiring on convex polygons and zero-sum cycle problems</title><title>SIAM journal on computing</title><description>Two natural operations on the set of convex polygons are shown to form a closed semiring; the two operations are vector summation and convex hull of the union. Various properties of these operations are investigated. Kleene's algorithm applied to this closed semiring solves the problem of determining whether a directed graph with two-dimensional labels has a zero-sum cycle or not. This algorithm is shown to run in polynomial time in the special cases of graphs with one-dimensional labels, BTTSP (Backedged Two-Terminal Series-Parallel) graphs, and graphs with bounded labels. The undirected zero-sum cycle problem and the zero-sum simple cycle problem are also investigated.</description><subject>Algorithms</subject><subject>Combinatorics</subject><subject>Combinatorics. Ordered structures</subject><subject>Exact sciences and technology</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Linear programming</subject><subject>Mathematics</subject><subject>Polygons</subject><subject>Sciences and techniques of general use</subject><issn>0097-5397</issn><issn>1095-7111</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1990</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpFkF1LwzAUhoMoWKf4F4IgXlXPaZqmuRzDLxh4o9clPUtGR5vMZBPrr7eygVfvzcP7wMPYNcI9olAPUKCGCk9YhqBlrhDxlGUAWuVSaHXOLlLaAGBZosiYnvNkhy52fs2D5xT8l_3m29CP6-ATN37Ff2wMedoPnEbqLd_G0PZ2SJfszJk-2avjztjH0-P74iVfvj2_LubLnIoadrlojS0U1pUsSYJxojbgqhVY67CtVNuSa8EIi0rXDmvpSFCNVDhURpeWxIzdHH4n8efepl2zCfvoJ2WjUatKqAIn6O4AUQwpReuabewGE8cGofnL0hyzTOTt8c4kMr2LxlOX_nEtyymOFL9GHWBf</recordid><startdate>19901001</startdate><enddate>19901001</enddate><creator>IWANO, K</creator><creator>STEIGLITZ, K</creator><general>Society for Industrial and Applied Mathematics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0W</scope><scope>U9A</scope></search><sort><creationdate>19901001</creationdate><title>A semiring on convex polygons and zero-sum cycle problems</title><author>IWANO, K ; STEIGLITZ, K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c280t-3bae2718654c50af38a0f6d0eef1b67bbcfb0a3e1798f185fc3c81c2f17a94ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1990</creationdate><topic>Algorithms</topic><topic>Combinatorics</topic><topic>Combinatorics. Ordered structures</topic><topic>Exact sciences and technology</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Linear programming</topic><topic>Mathematics</topic><topic>Polygons</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>IWANO, K</creatorcontrib><creatorcontrib>STEIGLITZ, K</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career &amp; Technical Education Database</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>SIAM journal on computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>IWANO, K</au><au>STEIGLITZ, K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A semiring on convex polygons and zero-sum cycle problems</atitle><jtitle>SIAM journal on computing</jtitle><date>1990-10-01</date><risdate>1990</risdate><volume>19</volume><issue>5</issue><spage>883</spage><epage>901</epage><pages>883-901</pages><issn>0097-5397</issn><eissn>1095-7111</eissn><abstract>Two natural operations on the set of convex polygons are shown to form a closed semiring; the two operations are vector summation and convex hull of the union. Various properties of these operations are investigated. Kleene's algorithm applied to this closed semiring solves the problem of determining whether a directed graph with two-dimensional labels has a zero-sum cycle or not. This algorithm is shown to run in polynomial time in the special cases of graphs with one-dimensional labels, BTTSP (Backedged Two-Terminal Series-Parallel) graphs, and graphs with bounded labels. The undirected zero-sum cycle problem and the zero-sum simple cycle problem are also investigated.</abstract><cop>Philadelphia, PA</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/0219061</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0097-5397
ispartof SIAM journal on computing, 1990-10, Vol.19 (5), p.883-901
issn 0097-5397
1095-7111
language eng
recordid cdi_proquest_journals_919763721
source SIAM Journals Online
subjects Algorithms
Combinatorics
Combinatorics. Ordered structures
Exact sciences and technology
Graph theory
Graphs
Linear programming
Mathematics
Polygons
Sciences and techniques of general use
title A semiring on convex polygons and zero-sum cycle problems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T21%3A51%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20semiring%20on%20convex%20polygons%20and%20zero-sum%20cycle%20problems&rft.jtitle=SIAM%20journal%20on%20computing&rft.au=IWANO,%20K&rft.date=1990-10-01&rft.volume=19&rft.issue=5&rft.spage=883&rft.epage=901&rft.pages=883-901&rft.issn=0097-5397&rft.eissn=1095-7111&rft_id=info:doi/10.1137/0219061&rft_dat=%3Cproquest_cross%3E2578174901%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=919763721&rft_id=info:pmid/&rfr_iscdi=true