Analysis of backoff protocols for multiple access channels

In this paper, we analyze the stochastic behavior of backoff protocols for multiple access channels such as the Ethernet. In particular, we prove that binary exponential backoff is unstable if the arrival rate of new messages at each station is $\tfrac{\lambda }{N}$ for any $\lambda > \frac{1}{2}...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on computing 1996-08, Vol.25 (4), p.740-774
Hauptverfasser: HASTAD, J, LEIGHTON, T, ROGOFF, B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 774
container_issue 4
container_start_page 740
container_title SIAM journal on computing
container_volume 25
creator HASTAD, J
LEIGHTON, T
ROGOFF, B
description In this paper, we analyze the stochastic behavior of backoff protocols for multiple access channels such as the Ethernet. In particular, we prove that binary exponential backoff is unstable if the arrival rate of new messages at each station is $\tfrac{\lambda }{N}$ for any $\lambda > \frac{1}{2}$ and the number of stations $N$ is sufficiently large. For small $N$, we prove that $\lambda \geqslant \lambda _0 + \frac{1}{{4N - 2}}$` implies instability, where $\lambda _0 \approx .567$. More importantly, we also prove that any superlinear polynomial backoff protocol (e.g., quadratic backoff) is stable for any set of arrival rates that sum to less than one and any number of stations. The results significantly extend the previous work in the area and provide the first examples of acknowledgment-based protocols known to be stable for a nonnegligible overall arrival rate distributed over an arbitrarily large number of stations. The results also disprove a popular assumption that exponential backoff is the best choice among acknowledgment-based protocols for systems with large overall arrival rates. Finally, we prove that any linear or sublinear backoff protocol is unstable if the arrival rate at each station is $\frac{\lambda }{N}$ for any fixed $\lambda $ and sufficiently large $N$.
doi_str_mv 10.1137/S0097539792233828
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_919558423</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2576826161</sourcerecordid><originalsourceid>FETCH-LOGICAL-c299t-2f903bec7fb744a1a78794af783110a4bdae4a7e9a6594d221523196ca37d3973</originalsourceid><addsrcrecordid>eNplkM1OwzAQhC0EEiXwANwsxDXgtZ065lZV_EmVOADnaOPaIsWNizc99O1J1YoLpz3MzuibYewaxB2AMvfvQlhTKWuslErVsj5hExC2Kg0AnLLJXi73-jm7IFoJAVqDmrCHWY9xRx3xFHiL7juFwDc5DcmlSDykzNfbOHSb6Dk654m4-8K-95Eu2VnASP7qeAv2-fT4MX8pF2_Pr_PZonTS2qGUwQrVemdCa7RGQFMbqzGYWgEI1O0SvUbjLU4rq5dSQiUV2KlDZZYjsCrYzSF3xPrZehqaVdrmEZsaC7aqaj02LhgcnlxORNmHZpO7NeZdA6LZL9T8W2j03B6DkRzGkLF3Hf0ZFRitpqB-AcYAZCw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>919558423</pqid></control><display><type>article</type><title>Analysis of backoff protocols for multiple access channels</title><source>SIAM Journals Online</source><creator>HASTAD, J ; LEIGHTON, T ; ROGOFF, B</creator><creatorcontrib>HASTAD, J ; LEIGHTON, T ; ROGOFF, B</creatorcontrib><description>In this paper, we analyze the stochastic behavior of backoff protocols for multiple access channels such as the Ethernet. In particular, we prove that binary exponential backoff is unstable if the arrival rate of new messages at each station is $\tfrac{\lambda }{N}$ for any $\lambda &gt; \frac{1}{2}$ and the number of stations $N$ is sufficiently large. For small $N$, we prove that $\lambda \geqslant \lambda _0 + \frac{1}{{4N - 2}}$` implies instability, where $\lambda _0 \approx .567$. More importantly, we also prove that any superlinear polynomial backoff protocol (e.g., quadratic backoff) is stable for any set of arrival rates that sum to less than one and any number of stations. The results significantly extend the previous work in the area and provide the first examples of acknowledgment-based protocols known to be stable for a nonnegligible overall arrival rate distributed over an arbitrarily large number of stations. The results also disprove a popular assumption that exponential backoff is the best choice among acknowledgment-based protocols for systems with large overall arrival rates. Finally, we prove that any linear or sublinear backoff protocol is unstable if the arrival rate at each station is $\frac{\lambda }{N}$ for any fixed $\lambda $ and sufficiently large $N$.</description><identifier>ISSN: 0097-5397</identifier><identifier>EISSN: 1095-7111</identifier><identifier>DOI: 10.1137/S0097539792233828</identifier><language>eng</language><publisher>Philadelphia, PA: Society for Industrial and Applied Mathematics</publisher><subject>Applied sciences ; Computer science ; Computer science; control theory; systems ; Computer systems and distributed systems. User interface ; Defense contracts ; Ethernet ; Exact sciences and technology ; Laboratories ; Linear inference, regression ; Mathematics ; Probability and statistics ; Protocol ; Sciences and techniques of general use ; Software ; Statistics</subject><ispartof>SIAM journal on computing, 1996-08, Vol.25 (4), p.740-774</ispartof><rights>1996 INIST-CNRS</rights><rights>[Copyright] © 1996 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c299t-2f903bec7fb744a1a78794af783110a4bdae4a7e9a6594d221523196ca37d3973</citedby><cites>FETCH-LOGICAL-c299t-2f903bec7fb744a1a78794af783110a4bdae4a7e9a6594d221523196ca37d3973</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3171,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3174361$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>HASTAD, J</creatorcontrib><creatorcontrib>LEIGHTON, T</creatorcontrib><creatorcontrib>ROGOFF, B</creatorcontrib><title>Analysis of backoff protocols for multiple access channels</title><title>SIAM journal on computing</title><description>In this paper, we analyze the stochastic behavior of backoff protocols for multiple access channels such as the Ethernet. In particular, we prove that binary exponential backoff is unstable if the arrival rate of new messages at each station is $\tfrac{\lambda }{N}$ for any $\lambda &gt; \frac{1}{2}$ and the number of stations $N$ is sufficiently large. For small $N$, we prove that $\lambda \geqslant \lambda _0 + \frac{1}{{4N - 2}}$` implies instability, where $\lambda _0 \approx .567$. More importantly, we also prove that any superlinear polynomial backoff protocol (e.g., quadratic backoff) is stable for any set of arrival rates that sum to less than one and any number of stations. The results significantly extend the previous work in the area and provide the first examples of acknowledgment-based protocols known to be stable for a nonnegligible overall arrival rate distributed over an arbitrarily large number of stations. The results also disprove a popular assumption that exponential backoff is the best choice among acknowledgment-based protocols for systems with large overall arrival rates. Finally, we prove that any linear or sublinear backoff protocol is unstable if the arrival rate at each station is $\frac{\lambda }{N}$ for any fixed $\lambda $ and sufficiently large $N$.</description><subject>Applied sciences</subject><subject>Computer science</subject><subject>Computer science; control theory; systems</subject><subject>Computer systems and distributed systems. User interface</subject><subject>Defense contracts</subject><subject>Ethernet</subject><subject>Exact sciences and technology</subject><subject>Laboratories</subject><subject>Linear inference, regression</subject><subject>Mathematics</subject><subject>Probability and statistics</subject><subject>Protocol</subject><subject>Sciences and techniques of general use</subject><subject>Software</subject><subject>Statistics</subject><issn>0097-5397</issn><issn>1095-7111</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNplkM1OwzAQhC0EEiXwANwsxDXgtZ065lZV_EmVOADnaOPaIsWNizc99O1J1YoLpz3MzuibYewaxB2AMvfvQlhTKWuslErVsj5hExC2Kg0AnLLJXi73-jm7IFoJAVqDmrCHWY9xRx3xFHiL7juFwDc5DcmlSDykzNfbOHSb6Dk654m4-8K-95Eu2VnASP7qeAv2-fT4MX8pF2_Pr_PZonTS2qGUwQrVemdCa7RGQFMbqzGYWgEI1O0SvUbjLU4rq5dSQiUV2KlDZZYjsCrYzSF3xPrZehqaVdrmEZsaC7aqaj02LhgcnlxORNmHZpO7NeZdA6LZL9T8W2j03B6DkRzGkLF3Hf0ZFRitpqB-AcYAZCw</recordid><startdate>19960801</startdate><enddate>19960801</enddate><creator>HASTAD, J</creator><creator>LEIGHTON, T</creator><creator>ROGOFF, B</creator><general>Society for Industrial and Applied Mathematics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0W</scope><scope>U9A</scope></search><sort><creationdate>19960801</creationdate><title>Analysis of backoff protocols for multiple access channels</title><author>HASTAD, J ; LEIGHTON, T ; ROGOFF, B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c299t-2f903bec7fb744a1a78794af783110a4bdae4a7e9a6594d221523196ca37d3973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Applied sciences</topic><topic>Computer science</topic><topic>Computer science; control theory; systems</topic><topic>Computer systems and distributed systems. User interface</topic><topic>Defense contracts</topic><topic>Ethernet</topic><topic>Exact sciences and technology</topic><topic>Laboratories</topic><topic>Linear inference, regression</topic><topic>Mathematics</topic><topic>Probability and statistics</topic><topic>Protocol</topic><topic>Sciences and techniques of general use</topic><topic>Software</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>HASTAD, J</creatorcontrib><creatorcontrib>LEIGHTON, T</creatorcontrib><creatorcontrib>ROGOFF, B</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career &amp; Technical Education Database</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>SIAM journal on computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>HASTAD, J</au><au>LEIGHTON, T</au><au>ROGOFF, B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of backoff protocols for multiple access channels</atitle><jtitle>SIAM journal on computing</jtitle><date>1996-08-01</date><risdate>1996</risdate><volume>25</volume><issue>4</issue><spage>740</spage><epage>774</epage><pages>740-774</pages><issn>0097-5397</issn><eissn>1095-7111</eissn><abstract>In this paper, we analyze the stochastic behavior of backoff protocols for multiple access channels such as the Ethernet. In particular, we prove that binary exponential backoff is unstable if the arrival rate of new messages at each station is $\tfrac{\lambda }{N}$ for any $\lambda &gt; \frac{1}{2}$ and the number of stations $N$ is sufficiently large. For small $N$, we prove that $\lambda \geqslant \lambda _0 + \frac{1}{{4N - 2}}$` implies instability, where $\lambda _0 \approx .567$. More importantly, we also prove that any superlinear polynomial backoff protocol (e.g., quadratic backoff) is stable for any set of arrival rates that sum to less than one and any number of stations. The results significantly extend the previous work in the area and provide the first examples of acknowledgment-based protocols known to be stable for a nonnegligible overall arrival rate distributed over an arbitrarily large number of stations. The results also disprove a popular assumption that exponential backoff is the best choice among acknowledgment-based protocols for systems with large overall arrival rates. Finally, we prove that any linear or sublinear backoff protocol is unstable if the arrival rate at each station is $\frac{\lambda }{N}$ for any fixed $\lambda $ and sufficiently large $N$.</abstract><cop>Philadelphia, PA</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/S0097539792233828</doi><tpages>35</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0097-5397
ispartof SIAM journal on computing, 1996-08, Vol.25 (4), p.740-774
issn 0097-5397
1095-7111
language eng
recordid cdi_proquest_journals_919558423
source SIAM Journals Online
subjects Applied sciences
Computer science
Computer science
control theory
systems
Computer systems and distributed systems. User interface
Defense contracts
Ethernet
Exact sciences and technology
Laboratories
Linear inference, regression
Mathematics
Probability and statistics
Protocol
Sciences and techniques of general use
Software
Statistics
title Analysis of backoff protocols for multiple access channels
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T04%3A56%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20backoff%20protocols%20for%20multiple%20access%20channels&rft.jtitle=SIAM%20journal%20on%20computing&rft.au=HASTAD,%20J&rft.date=1996-08-01&rft.volume=25&rft.issue=4&rft.spage=740&rft.epage=774&rft.pages=740-774&rft.issn=0097-5397&rft.eissn=1095-7111&rft_id=info:doi/10.1137/S0097539792233828&rft_dat=%3Cproquest_cross%3E2576826161%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=919558423&rft_id=info:pmid/&rfr_iscdi=true