A Statistical Analysis of Morse Wavelet Coherence
Wavelet coherence computed from two time series has been widely applied in hypothesis testing situations, but has proven resistant to analytic study, with resort to simulations for statistical properties. As part of the null hypothesis being tested, such simulations invariably assume joint stationar...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on signal processing 2010-03, Vol.58 (3), p.980-989 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 989 |
---|---|
container_issue | 3 |
container_start_page | 980 |
container_title | IEEE transactions on signal processing |
container_volume | 58 |
creator | Cohen, E.A.K. Walden, A.T. |
description | Wavelet coherence computed from two time series has been widely applied in hypothesis testing situations, but has proven resistant to analytic study, with resort to simulations for statistical properties. As part of the null hypothesis being tested, such simulations invariably assume joint stationarity of the series. If estimated using multiple orthogonal Morse wavelets, wavelet coherence is in fact amenable to statistical study. Since the wavelets are complex-valued, we consider the case of wavelet coherence calculated from discrete-time complex-valued and stationary time series. Under Gaussianity, the Goodman distribution is, for large samples, appropriate for wavelet coherence. The true wavelet coherence value is identified in terms of its frequency domain equivalent. Theoretical results are illustrated and verified via simulations. |
doi_str_mv | 10.1109/TSP.2009.2033645 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_919486230</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5280341</ieee_id><sourcerecordid>875029603</sourcerecordid><originalsourceid>FETCH-LOGICAL-c473t-a12a8650fc3c33a1d2b41c2a8a1315f22120acddc7bf98a5530ef9c8e0ef60d23</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWKt3wcsiiKetk8_dHEvxCyoKregtpNkJbtl2NdkK_femtvTgxUsmzDwz8D6EnFMYUAr6Zjp5GTAAnR7OlZAHpEe1oDmIQh2mP0iey7J4PyYnMc4BqBBa9QgdZpPOdnXsamebbLi0zTrWMWt99tSGiNmb_cYGu2zUfmDApcNTcuRtE_FsV_vk9e52OnrIx8_3j6PhOHei4F1uKbOlkuAdd5xbWrGZoC71LOVUesYoA-uqyhUzr0srJQf02pWYioKK8T653t79DO3XCmNnFnV02DR2ie0qmrKQwLRKaf8jC8ELBfBLXv4h5-0qpMzR6GSrVIxDgmALudDGGNCbz1AvbFgbCmbj2iTXZuPa7FynlavdXRuTRh_s0tVxv8eYSHEFTdzFlqsRcT-WrASepj-MvIUC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>919486230</pqid></control><display><type>article</type><title>A Statistical Analysis of Morse Wavelet Coherence</title><source>IEEE Electronic Library (IEL)</source><creator>Cohen, E.A.K. ; Walden, A.T.</creator><creatorcontrib>Cohen, E.A.K. ; Walden, A.T.</creatorcontrib><description>Wavelet coherence computed from two time series has been widely applied in hypothesis testing situations, but has proven resistant to analytic study, with resort to simulations for statistical properties. As part of the null hypothesis being tested, such simulations invariably assume joint stationarity of the series. If estimated using multiple orthogonal Morse wavelets, wavelet coherence is in fact amenable to statistical study. Since the wavelets are complex-valued, we consider the case of wavelet coherence calculated from discrete-time complex-valued and stationary time series. Under Gaussianity, the Goodman distribution is, for large samples, appropriate for wavelet coherence. The true wavelet coherence value is identified in terms of its frequency domain equivalent. Theoretical results are illustrated and verified via simulations.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2009.2033645</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Analytical models ; Applied sciences ; Coherence ; Computational modeling ; Computer simulation ; Discrete wavelet transforms ; Equivalence ; Exact sciences and technology ; Gaussian distribution ; Goodman distribution ; Information, signal and communications theory ; Mathematical analysis ; Miscellaneous ; Morse wavelets ; Null hypothesis ; Signal processing ; Statistical analysis ; Telecommunications and information theory ; Testing ; Time series ; Time series analysis ; Wavelet ; Wavelet analysis ; wavelet coherence ; Wavelet domain</subject><ispartof>IEEE transactions on signal processing, 2010-03, Vol.58 (3), p.980-989</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Mar 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c473t-a12a8650fc3c33a1d2b41c2a8a1315f22120acddc7bf98a5530ef9c8e0ef60d23</citedby><cites>FETCH-LOGICAL-c473t-a12a8650fc3c33a1d2b41c2a8a1315f22120acddc7bf98a5530ef9c8e0ef60d23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5280341$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5280341$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22421241$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Cohen, E.A.K.</creatorcontrib><creatorcontrib>Walden, A.T.</creatorcontrib><title>A Statistical Analysis of Morse Wavelet Coherence</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>Wavelet coherence computed from two time series has been widely applied in hypothesis testing situations, but has proven resistant to analytic study, with resort to simulations for statistical properties. As part of the null hypothesis being tested, such simulations invariably assume joint stationarity of the series. If estimated using multiple orthogonal Morse wavelets, wavelet coherence is in fact amenable to statistical study. Since the wavelets are complex-valued, we consider the case of wavelet coherence calculated from discrete-time complex-valued and stationary time series. Under Gaussianity, the Goodman distribution is, for large samples, appropriate for wavelet coherence. The true wavelet coherence value is identified in terms of its frequency domain equivalent. Theoretical results are illustrated and verified via simulations.</description><subject>Analytical models</subject><subject>Applied sciences</subject><subject>Coherence</subject><subject>Computational modeling</subject><subject>Computer simulation</subject><subject>Discrete wavelet transforms</subject><subject>Equivalence</subject><subject>Exact sciences and technology</subject><subject>Gaussian distribution</subject><subject>Goodman distribution</subject><subject>Information, signal and communications theory</subject><subject>Mathematical analysis</subject><subject>Miscellaneous</subject><subject>Morse wavelets</subject><subject>Null hypothesis</subject><subject>Signal processing</subject><subject>Statistical analysis</subject><subject>Telecommunications and information theory</subject><subject>Testing</subject><subject>Time series</subject><subject>Time series analysis</subject><subject>Wavelet</subject><subject>Wavelet analysis</subject><subject>wavelet coherence</subject><subject>Wavelet domain</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFkE1LAzEQhoMoWKt3wcsiiKetk8_dHEvxCyoKregtpNkJbtl2NdkK_femtvTgxUsmzDwz8D6EnFMYUAr6Zjp5GTAAnR7OlZAHpEe1oDmIQh2mP0iey7J4PyYnMc4BqBBa9QgdZpPOdnXsamebbLi0zTrWMWt99tSGiNmb_cYGu2zUfmDApcNTcuRtE_FsV_vk9e52OnrIx8_3j6PhOHei4F1uKbOlkuAdd5xbWrGZoC71LOVUesYoA-uqyhUzr0srJQf02pWYioKK8T653t79DO3XCmNnFnV02DR2ie0qmrKQwLRKaf8jC8ELBfBLXv4h5-0qpMzR6GSrVIxDgmALudDGGNCbz1AvbFgbCmbj2iTXZuPa7FynlavdXRuTRh_s0tVxv8eYSHEFTdzFlqsRcT-WrASepj-MvIUC</recordid><startdate>20100301</startdate><enddate>20100301</enddate><creator>Cohen, E.A.K.</creator><creator>Walden, A.T.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20100301</creationdate><title>A Statistical Analysis of Morse Wavelet Coherence</title><author>Cohen, E.A.K. ; Walden, A.T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c473t-a12a8650fc3c33a1d2b41c2a8a1315f22120acddc7bf98a5530ef9c8e0ef60d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Analytical models</topic><topic>Applied sciences</topic><topic>Coherence</topic><topic>Computational modeling</topic><topic>Computer simulation</topic><topic>Discrete wavelet transforms</topic><topic>Equivalence</topic><topic>Exact sciences and technology</topic><topic>Gaussian distribution</topic><topic>Goodman distribution</topic><topic>Information, signal and communications theory</topic><topic>Mathematical analysis</topic><topic>Miscellaneous</topic><topic>Morse wavelets</topic><topic>Null hypothesis</topic><topic>Signal processing</topic><topic>Statistical analysis</topic><topic>Telecommunications and information theory</topic><topic>Testing</topic><topic>Time series</topic><topic>Time series analysis</topic><topic>Wavelet</topic><topic>Wavelet analysis</topic><topic>wavelet coherence</topic><topic>Wavelet domain</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cohen, E.A.K.</creatorcontrib><creatorcontrib>Walden, A.T.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cohen, E.A.K.</au><au>Walden, A.T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Statistical Analysis of Morse Wavelet Coherence</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2010-03-01</date><risdate>2010</risdate><volume>58</volume><issue>3</issue><spage>980</spage><epage>989</epage><pages>980-989</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>Wavelet coherence computed from two time series has been widely applied in hypothesis testing situations, but has proven resistant to analytic study, with resort to simulations for statistical properties. As part of the null hypothesis being tested, such simulations invariably assume joint stationarity of the series. If estimated using multiple orthogonal Morse wavelets, wavelet coherence is in fact amenable to statistical study. Since the wavelets are complex-valued, we consider the case of wavelet coherence calculated from discrete-time complex-valued and stationary time series. Under Gaussianity, the Goodman distribution is, for large samples, appropriate for wavelet coherence. The true wavelet coherence value is identified in terms of its frequency domain equivalent. Theoretical results are illustrated and verified via simulations.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TSP.2009.2033645</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1053-587X |
ispartof | IEEE transactions on signal processing, 2010-03, Vol.58 (3), p.980-989 |
issn | 1053-587X 1941-0476 |
language | eng |
recordid | cdi_proquest_journals_919486230 |
source | IEEE Electronic Library (IEL) |
subjects | Analytical models Applied sciences Coherence Computational modeling Computer simulation Discrete wavelet transforms Equivalence Exact sciences and technology Gaussian distribution Goodman distribution Information, signal and communications theory Mathematical analysis Miscellaneous Morse wavelets Null hypothesis Signal processing Statistical analysis Telecommunications and information theory Testing Time series Time series analysis Wavelet Wavelet analysis wavelet coherence Wavelet domain |
title | A Statistical Analysis of Morse Wavelet Coherence |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T21%3A23%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Statistical%20Analysis%20of%20Morse%20Wavelet%20Coherence&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Cohen,%20E.A.K.&rft.date=2010-03-01&rft.volume=58&rft.issue=3&rft.spage=980&rft.epage=989&rft.pages=980-989&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2009.2033645&rft_dat=%3Cproquest_RIE%3E875029603%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=919486230&rft_id=info:pmid/&rft_ieee_id=5280341&rfr_iscdi=true |