A Statistical Analysis of Morse Wavelet Coherence

Wavelet coherence computed from two time series has been widely applied in hypothesis testing situations, but has proven resistant to analytic study, with resort to simulations for statistical properties. As part of the null hypothesis being tested, such simulations invariably assume joint stationar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 2010-03, Vol.58 (3), p.980-989
Hauptverfasser: Cohen, E.A.K., Walden, A.T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 989
container_issue 3
container_start_page 980
container_title IEEE transactions on signal processing
container_volume 58
creator Cohen, E.A.K.
Walden, A.T.
description Wavelet coherence computed from two time series has been widely applied in hypothesis testing situations, but has proven resistant to analytic study, with resort to simulations for statistical properties. As part of the null hypothesis being tested, such simulations invariably assume joint stationarity of the series. If estimated using multiple orthogonal Morse wavelets, wavelet coherence is in fact amenable to statistical study. Since the wavelets are complex-valued, we consider the case of wavelet coherence calculated from discrete-time complex-valued and stationary time series. Under Gaussianity, the Goodman distribution is, for large samples, appropriate for wavelet coherence. The true wavelet coherence value is identified in terms of its frequency domain equivalent. Theoretical results are illustrated and verified via simulations.
doi_str_mv 10.1109/TSP.2009.2033645
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_919486230</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5280341</ieee_id><sourcerecordid>875029603</sourcerecordid><originalsourceid>FETCH-LOGICAL-c473t-a12a8650fc3c33a1d2b41c2a8a1315f22120acddc7bf98a5530ef9c8e0ef60d23</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWKt3wcsiiKetk8_dHEvxCyoKregtpNkJbtl2NdkK_femtvTgxUsmzDwz8D6EnFMYUAr6Zjp5GTAAnR7OlZAHpEe1oDmIQh2mP0iey7J4PyYnMc4BqBBa9QgdZpPOdnXsamebbLi0zTrWMWt99tSGiNmb_cYGu2zUfmDApcNTcuRtE_FsV_vk9e52OnrIx8_3j6PhOHei4F1uKbOlkuAdd5xbWrGZoC71LOVUesYoA-uqyhUzr0srJQf02pWYioKK8T653t79DO3XCmNnFnV02DR2ie0qmrKQwLRKaf8jC8ELBfBLXv4h5-0qpMzR6GSrVIxDgmALudDGGNCbz1AvbFgbCmbj2iTXZuPa7FynlavdXRuTRh_s0tVxv8eYSHEFTdzFlqsRcT-WrASepj-MvIUC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>919486230</pqid></control><display><type>article</type><title>A Statistical Analysis of Morse Wavelet Coherence</title><source>IEEE Electronic Library (IEL)</source><creator>Cohen, E.A.K. ; Walden, A.T.</creator><creatorcontrib>Cohen, E.A.K. ; Walden, A.T.</creatorcontrib><description>Wavelet coherence computed from two time series has been widely applied in hypothesis testing situations, but has proven resistant to analytic study, with resort to simulations for statistical properties. As part of the null hypothesis being tested, such simulations invariably assume joint stationarity of the series. If estimated using multiple orthogonal Morse wavelets, wavelet coherence is in fact amenable to statistical study. Since the wavelets are complex-valued, we consider the case of wavelet coherence calculated from discrete-time complex-valued and stationary time series. Under Gaussianity, the Goodman distribution is, for large samples, appropriate for wavelet coherence. The true wavelet coherence value is identified in terms of its frequency domain equivalent. Theoretical results are illustrated and verified via simulations.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2009.2033645</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Analytical models ; Applied sciences ; Coherence ; Computational modeling ; Computer simulation ; Discrete wavelet transforms ; Equivalence ; Exact sciences and technology ; Gaussian distribution ; Goodman distribution ; Information, signal and communications theory ; Mathematical analysis ; Miscellaneous ; Morse wavelets ; Null hypothesis ; Signal processing ; Statistical analysis ; Telecommunications and information theory ; Testing ; Time series ; Time series analysis ; Wavelet ; Wavelet analysis ; wavelet coherence ; Wavelet domain</subject><ispartof>IEEE transactions on signal processing, 2010-03, Vol.58 (3), p.980-989</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Mar 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c473t-a12a8650fc3c33a1d2b41c2a8a1315f22120acddc7bf98a5530ef9c8e0ef60d23</citedby><cites>FETCH-LOGICAL-c473t-a12a8650fc3c33a1d2b41c2a8a1315f22120acddc7bf98a5530ef9c8e0ef60d23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5280341$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5280341$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22421241$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Cohen, E.A.K.</creatorcontrib><creatorcontrib>Walden, A.T.</creatorcontrib><title>A Statistical Analysis of Morse Wavelet Coherence</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>Wavelet coherence computed from two time series has been widely applied in hypothesis testing situations, but has proven resistant to analytic study, with resort to simulations for statistical properties. As part of the null hypothesis being tested, such simulations invariably assume joint stationarity of the series. If estimated using multiple orthogonal Morse wavelets, wavelet coherence is in fact amenable to statistical study. Since the wavelets are complex-valued, we consider the case of wavelet coherence calculated from discrete-time complex-valued and stationary time series. Under Gaussianity, the Goodman distribution is, for large samples, appropriate for wavelet coherence. The true wavelet coherence value is identified in terms of its frequency domain equivalent. Theoretical results are illustrated and verified via simulations.</description><subject>Analytical models</subject><subject>Applied sciences</subject><subject>Coherence</subject><subject>Computational modeling</subject><subject>Computer simulation</subject><subject>Discrete wavelet transforms</subject><subject>Equivalence</subject><subject>Exact sciences and technology</subject><subject>Gaussian distribution</subject><subject>Goodman distribution</subject><subject>Information, signal and communications theory</subject><subject>Mathematical analysis</subject><subject>Miscellaneous</subject><subject>Morse wavelets</subject><subject>Null hypothesis</subject><subject>Signal processing</subject><subject>Statistical analysis</subject><subject>Telecommunications and information theory</subject><subject>Testing</subject><subject>Time series</subject><subject>Time series analysis</subject><subject>Wavelet</subject><subject>Wavelet analysis</subject><subject>wavelet coherence</subject><subject>Wavelet domain</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFkE1LAzEQhoMoWKt3wcsiiKetk8_dHEvxCyoKregtpNkJbtl2NdkK_femtvTgxUsmzDwz8D6EnFMYUAr6Zjp5GTAAnR7OlZAHpEe1oDmIQh2mP0iey7J4PyYnMc4BqBBa9QgdZpPOdnXsamebbLi0zTrWMWt99tSGiNmb_cYGu2zUfmDApcNTcuRtE_FsV_vk9e52OnrIx8_3j6PhOHei4F1uKbOlkuAdd5xbWrGZoC71LOVUesYoA-uqyhUzr0srJQf02pWYioKK8T653t79DO3XCmNnFnV02DR2ie0qmrKQwLRKaf8jC8ELBfBLXv4h5-0qpMzR6GSrVIxDgmALudDGGNCbz1AvbFgbCmbj2iTXZuPa7FynlavdXRuTRh_s0tVxv8eYSHEFTdzFlqsRcT-WrASepj-MvIUC</recordid><startdate>20100301</startdate><enddate>20100301</enddate><creator>Cohen, E.A.K.</creator><creator>Walden, A.T.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20100301</creationdate><title>A Statistical Analysis of Morse Wavelet Coherence</title><author>Cohen, E.A.K. ; Walden, A.T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c473t-a12a8650fc3c33a1d2b41c2a8a1315f22120acddc7bf98a5530ef9c8e0ef60d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Analytical models</topic><topic>Applied sciences</topic><topic>Coherence</topic><topic>Computational modeling</topic><topic>Computer simulation</topic><topic>Discrete wavelet transforms</topic><topic>Equivalence</topic><topic>Exact sciences and technology</topic><topic>Gaussian distribution</topic><topic>Goodman distribution</topic><topic>Information, signal and communications theory</topic><topic>Mathematical analysis</topic><topic>Miscellaneous</topic><topic>Morse wavelets</topic><topic>Null hypothesis</topic><topic>Signal processing</topic><topic>Statistical analysis</topic><topic>Telecommunications and information theory</topic><topic>Testing</topic><topic>Time series</topic><topic>Time series analysis</topic><topic>Wavelet</topic><topic>Wavelet analysis</topic><topic>wavelet coherence</topic><topic>Wavelet domain</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cohen, E.A.K.</creatorcontrib><creatorcontrib>Walden, A.T.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cohen, E.A.K.</au><au>Walden, A.T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Statistical Analysis of Morse Wavelet Coherence</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2010-03-01</date><risdate>2010</risdate><volume>58</volume><issue>3</issue><spage>980</spage><epage>989</epage><pages>980-989</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>Wavelet coherence computed from two time series has been widely applied in hypothesis testing situations, but has proven resistant to analytic study, with resort to simulations for statistical properties. As part of the null hypothesis being tested, such simulations invariably assume joint stationarity of the series. If estimated using multiple orthogonal Morse wavelets, wavelet coherence is in fact amenable to statistical study. Since the wavelets are complex-valued, we consider the case of wavelet coherence calculated from discrete-time complex-valued and stationary time series. Under Gaussianity, the Goodman distribution is, for large samples, appropriate for wavelet coherence. The true wavelet coherence value is identified in terms of its frequency domain equivalent. Theoretical results are illustrated and verified via simulations.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TSP.2009.2033645</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1053-587X
ispartof IEEE transactions on signal processing, 2010-03, Vol.58 (3), p.980-989
issn 1053-587X
1941-0476
language eng
recordid cdi_proquest_journals_919486230
source IEEE Electronic Library (IEL)
subjects Analytical models
Applied sciences
Coherence
Computational modeling
Computer simulation
Discrete wavelet transforms
Equivalence
Exact sciences and technology
Gaussian distribution
Goodman distribution
Information, signal and communications theory
Mathematical analysis
Miscellaneous
Morse wavelets
Null hypothesis
Signal processing
Statistical analysis
Telecommunications and information theory
Testing
Time series
Time series analysis
Wavelet
Wavelet analysis
wavelet coherence
Wavelet domain
title A Statistical Analysis of Morse Wavelet Coherence
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T21%3A23%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Statistical%20Analysis%20of%20Morse%20Wavelet%20Coherence&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Cohen,%20E.A.K.&rft.date=2010-03-01&rft.volume=58&rft.issue=3&rft.spage=980&rft.epage=989&rft.pages=980-989&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2009.2033645&rft_dat=%3Cproquest_RIE%3E875029603%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=919486230&rft_id=info:pmid/&rft_ieee_id=5280341&rfr_iscdi=true