Computationally Sound Proofs

This paper puts forward a new notion of a proof based on computational complexity and explores its implications for computation at large. Computationally sound proofs provide, in a novel and meaningful framework, answers to old and new questions in complexity theory. In particular, given a random or...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on computing 2000, Vol.30 (4), p.1253-1298
1. Verfasser: Micali, Silvio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1298
container_issue 4
container_start_page 1253
container_title SIAM journal on computing
container_volume 30
creator Micali, Silvio
description This paper puts forward a new notion of a proof based on computational complexity and explores its implications for computation at large. Computationally sound proofs provide, in a novel and meaningful framework, answers to old and new questions in complexity theory. In particular, given a random oracle or a new complexity assumption, they enable us to prove that verifying is easier than deciding for all theorems; provide a quite effective way to prove membership in computationally hard languages (such as ${\cal C}o$-$\cal N \cal P$-complete ones); and show that every computation possesses a short certificate vouching its correctness. Finally, if a special type of computationally sound proof exists, we show that Blum's notion of program checking can be meaningfully broadened so as to prove that $\cal N \cal P$-complete languages are checkable.
doi_str_mv 10.1137/S0097539795284959
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_918945246</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2575317661</sourcerecordid><originalsourceid>FETCH-LOGICAL-c313t-52be49e1927cd9dae92a84322921aaf0b5402aab5e7277385d4a9ef97d5d92a63</originalsourceid><addsrcrecordid>eNplkE1LAzEURYMoOFZ_gOCiuB_Ny4eZt5RBq1BooboObyYJtEybMZlZ9N_boe5c3cU5XC6XsXvgTwDSPG84R6MlGtSiUqjxghXAUZcGAC5ZMeFy4tfsJucd56AUyII91HHfjwMN23igrjvON3E8uPk6xRjyLbsK1GV_95cz9v3-9lV_lMvV4rN-XZatBDmUWjReoQcUpnXoyKOgSkkhUABR4I1WXBA12hthjKy0U4Q-oHHandQXOWOP594-xZ_R58Hu4phOe7JFqFBpoSYJzlKbYs7JB9un7Z7S0QK30wf23wfyF9ufTPI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>918945246</pqid></control><display><type>article</type><title>Computationally Sound Proofs</title><source>SIAM Journals Online</source><source>EBSCOhost Business Source Complete</source><creator>Micali, Silvio</creator><creatorcontrib>Micali, Silvio</creatorcontrib><description>This paper puts forward a new notion of a proof based on computational complexity and explores its implications for computation at large. Computationally sound proofs provide, in a novel and meaningful framework, answers to old and new questions in complexity theory. In particular, given a random oracle or a new complexity assumption, they enable us to prove that verifying is easier than deciding for all theorems; provide a quite effective way to prove membership in computationally hard languages (such as ${\cal C}o$-$\cal N \cal P$-complete ones); and show that every computation possesses a short certificate vouching its correctness. Finally, if a special type of computationally sound proof exists, we show that Blum's notion of program checking can be meaningfully broadened so as to prove that $\cal N \cal P$-complete languages are checkable.</description><identifier>ISSN: 0097-5397</identifier><identifier>EISSN: 1095-7111</identifier><identifier>DOI: 10.1137/S0097539795284959</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Algorithms ; Complexity theory ; Language ; Theorems</subject><ispartof>SIAM journal on computing, 2000, Vol.30 (4), p.1253-1298</ispartof><rights>[Copyright] © 2000 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c313t-52be49e1927cd9dae92a84322921aaf0b5402aab5e7277385d4a9ef97d5d92a63</citedby><cites>FETCH-LOGICAL-c313t-52be49e1927cd9dae92a84322921aaf0b5402aab5e7277385d4a9ef97d5d92a63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3170,4009,27902,27903,27904</link.rule.ids></links><search><creatorcontrib>Micali, Silvio</creatorcontrib><title>Computationally Sound Proofs</title><title>SIAM journal on computing</title><description>This paper puts forward a new notion of a proof based on computational complexity and explores its implications for computation at large. Computationally sound proofs provide, in a novel and meaningful framework, answers to old and new questions in complexity theory. In particular, given a random oracle or a new complexity assumption, they enable us to prove that verifying is easier than deciding for all theorems; provide a quite effective way to prove membership in computationally hard languages (such as ${\cal C}o$-$\cal N \cal P$-complete ones); and show that every computation possesses a short certificate vouching its correctness. Finally, if a special type of computationally sound proof exists, we show that Blum's notion of program checking can be meaningfully broadened so as to prove that $\cal N \cal P$-complete languages are checkable.</description><subject>Algorithms</subject><subject>Complexity theory</subject><subject>Language</subject><subject>Theorems</subject><issn>0097-5397</issn><issn>1095-7111</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNplkE1LAzEURYMoOFZ_gOCiuB_Ny4eZt5RBq1BooboObyYJtEybMZlZ9N_boe5c3cU5XC6XsXvgTwDSPG84R6MlGtSiUqjxghXAUZcGAC5ZMeFy4tfsJucd56AUyII91HHfjwMN23igrjvON3E8uPk6xRjyLbsK1GV_95cz9v3-9lV_lMvV4rN-XZatBDmUWjReoQcUpnXoyKOgSkkhUABR4I1WXBA12hthjKy0U4Q-oHHandQXOWOP594-xZ_R58Hu4phOe7JFqFBpoSYJzlKbYs7JB9un7Z7S0QK30wf23wfyF9ufTPI</recordid><startdate>2000</startdate><enddate>2000</enddate><creator>Micali, Silvio</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0W</scope><scope>U9A</scope></search><sort><creationdate>2000</creationdate><title>Computationally Sound Proofs</title><author>Micali, Silvio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c313t-52be49e1927cd9dae92a84322921aaf0b5402aab5e7277385d4a9ef97d5d92a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Algorithms</topic><topic>Complexity theory</topic><topic>Language</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Micali, Silvio</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career &amp; Technical Education Database</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>SIAM journal on computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Micali, Silvio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computationally Sound Proofs</atitle><jtitle>SIAM journal on computing</jtitle><date>2000</date><risdate>2000</risdate><volume>30</volume><issue>4</issue><spage>1253</spage><epage>1298</epage><pages>1253-1298</pages><issn>0097-5397</issn><eissn>1095-7111</eissn><abstract>This paper puts forward a new notion of a proof based on computational complexity and explores its implications for computation at large. Computationally sound proofs provide, in a novel and meaningful framework, answers to old and new questions in complexity theory. In particular, given a random oracle or a new complexity assumption, they enable us to prove that verifying is easier than deciding for all theorems; provide a quite effective way to prove membership in computationally hard languages (such as ${\cal C}o$-$\cal N \cal P$-complete ones); and show that every computation possesses a short certificate vouching its correctness. Finally, if a special type of computationally sound proof exists, we show that Blum's notion of program checking can be meaningfully broadened so as to prove that $\cal N \cal P$-complete languages are checkable.</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/S0097539795284959</doi><tpages>46</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0097-5397
ispartof SIAM journal on computing, 2000, Vol.30 (4), p.1253-1298
issn 0097-5397
1095-7111
language eng
recordid cdi_proquest_journals_918945246
source SIAM Journals Online; EBSCOhost Business Source Complete
subjects Algorithms
Complexity theory
Language
Theorems
title Computationally Sound Proofs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T12%3A18%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computationally%20Sound%20Proofs&rft.jtitle=SIAM%20journal%20on%20computing&rft.au=Micali,%20Silvio&rft.date=2000&rft.volume=30&rft.issue=4&rft.spage=1253&rft.epage=1298&rft.pages=1253-1298&rft.issn=0097-5397&rft.eissn=1095-7111&rft_id=info:doi/10.1137/S0097539795284959&rft_dat=%3Cproquest_cross%3E2575317661%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=918945246&rft_id=info:pmid/&rfr_iscdi=true