High-Dose Phosphorus-Implanted 4H-SiC: Microwave and Conventional Post-Implantation Annealing at Temperatures ≥1700°C

Semi-insulating 4H-SiC ⟨0001⟩ wafers have been phosphorus ion implanted at 500°C to obtain phosphorus box depth profiles with dopant concentration from 5 × 10 19  cm −3 to 8 × 10 20  cm −3 . These samples have been annealed by microwave and conventional inductively heated systems in the temperature...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of electronic materials 2012-03, Vol.41 (3), p.457-465
Hauptverfasser: Nipoti, R., Nath, A., Qadri, S.B., Tian, Y-L., Albonetti, C., Carnera, A., Rao, Mulpuri V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 465
container_issue 3
container_start_page 457
container_title Journal of electronic materials
container_volume 41
creator Nipoti, R.
Nath, A.
Qadri, S.B.
Tian, Y-L.
Albonetti, C.
Carnera, A.
Rao, Mulpuri V.
description Semi-insulating 4H-SiC ⟨0001⟩ wafers have been phosphorus ion implanted at 500°C to obtain phosphorus box depth profiles with dopant concentration from 5 × 10 19  cm −3 to 8 × 10 20  cm −3 . These samples have been annealed by microwave and conventional inductively heated systems in the temperature range 1700°C to 2050°C. Resistivity, Hall electron density, and Hall mobility of the phosphorus-implanted and annealed 4H-SiC layers have been measured in the temperature range from room temperature to 450°C. The high-resolution x-ray diffraction and rocking curve of both virgin and processed 4H-SiC samples have been analyzed to obtain the sample crystal quality up to about 3  μ m depth from the wafer surface. For both increasing implanted phosphorus concentration and increasing post-implantation annealing temperature the implanted material resistivity decreases to an asymptotic value of about 1.5 × 10 −3  Ω cm. Increasing the implanted phosphorus concentration and post-implantation annealing temperature beyond 4 × 10 20  cm −3 and 2000°C, respectively, does not bring any apparent benefit with respect to the minimum obtainable resistivity. Sheet resistance and sheet electron density increase with increasing measurement temperature. Electron density saturates at 1.5 × 10 20  cm −3 for implanted phosphorus plateau values ≥4 × 10 20  cm −3 , irrespective of the post-implantation annealing method. Implantation produces an increase of the lattice parameter in the bulk 4H-SiC underneath the phosphorus-implanted layer. Microwave and conventional annealing produce a further increase of the lattice parameter in such a depth region and an equivalent recovered lattice in the phosphorus-implanted layers.
doi_str_mv 10.1007/s11664-011-1794-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_918774814</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2574408941</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3267-22e0d7e04ae6fee6aed0b2bd5c774d2a4f0042b42f183778b3a516c2ddb56db73</originalsourceid><addsrcrecordid>eNp1kE2O1DAQhS0EEs3AAdhZSCwNLsc_GXaj8NMjDWIkBomdVYkr3Rml7WCnBzgCB2HPGTgKJyGtHmDFqqSq9z69eow9BvkMpHTPC4C1WkgAAe5UC3eHrcDoSkBtP95lK1lZEEZV5j57UMq1lGCghhX7sh42W_EyFeKX21Smbcr7Is5304hxpsD1Wrwfmhf87dDl9BlviGMMvEnxhuI8pIgjv0xl_uPAw46fxUg4DnHDceZXtJso47zPVPivb9_BSfnzR_OQ3etxLPTodp6wD69fXTVrcfHuzXlzdiG6SlknlCIZHEmNZHsiixRkq9pgOud0UKh7KbVqteqhrpyr2woN2E6F0BobWledsCdH7pTTpz2V2V-nfV5yF38K9QKpQS8iOIqWJ0vJ1PspDzvMXz1If-jXH_v1S7_-0K8_gJ_egrF0OPYZYzeUv0ZlXG0qWS86ddSV5RQ3lP8F-D_8NycjjIY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>918774814</pqid></control><display><type>article</type><title>High-Dose Phosphorus-Implanted 4H-SiC: Microwave and Conventional Post-Implantation Annealing at Temperatures ≥1700°C</title><source>SpringerLink Journals - AutoHoldings</source><creator>Nipoti, R. ; Nath, A. ; Qadri, S.B. ; Tian, Y-L. ; Albonetti, C. ; Carnera, A. ; Rao, Mulpuri V.</creator><creatorcontrib>Nipoti, R. ; Nath, A. ; Qadri, S.B. ; Tian, Y-L. ; Albonetti, C. ; Carnera, A. ; Rao, Mulpuri V.</creatorcontrib><description>Semi-insulating 4H-SiC ⟨0001⟩ wafers have been phosphorus ion implanted at 500°C to obtain phosphorus box depth profiles with dopant concentration from 5 × 10 19  cm −3 to 8 × 10 20  cm −3 . These samples have been annealed by microwave and conventional inductively heated systems in the temperature range 1700°C to 2050°C. Resistivity, Hall electron density, and Hall mobility of the phosphorus-implanted and annealed 4H-SiC layers have been measured in the temperature range from room temperature to 450°C. The high-resolution x-ray diffraction and rocking curve of both virgin and processed 4H-SiC samples have been analyzed to obtain the sample crystal quality up to about 3  μ m depth from the wafer surface. For both increasing implanted phosphorus concentration and increasing post-implantation annealing temperature the implanted material resistivity decreases to an asymptotic value of about 1.5 × 10 −3  Ω cm. Increasing the implanted phosphorus concentration and post-implantation annealing temperature beyond 4 × 10 20  cm −3 and 2000°C, respectively, does not bring any apparent benefit with respect to the minimum obtainable resistivity. Sheet resistance and sheet electron density increase with increasing measurement temperature. Electron density saturates at 1.5 × 10 20  cm −3 for implanted phosphorus plateau values ≥4 × 10 20  cm −3 , irrespective of the post-implantation annealing method. Implantation produces an increase of the lattice parameter in the bulk 4H-SiC underneath the phosphorus-implanted layer. Microwave and conventional annealing produce a further increase of the lattice parameter in such a depth region and an equivalent recovered lattice in the phosphorus-implanted layers.</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-011-1794-7</identifier><identifier>CODEN: JECMA5</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Annealing ; Applied sciences ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Condensed matter: structure, mechanical and thermal properties ; Electronics ; Electronics and Microelectronics ; Exact sciences and technology ; Instrumentation ; Ion radiation effects ; Materials ; Materials Science ; Optical and Electronic Materials ; Phosphorus ; Physical radiation effects, radiation damage ; Physics ; Solid State Physics ; Structure of solids and liquids; crystallography ; Temperature effects ; Transplants &amp; implants</subject><ispartof>Journal of electronic materials, 2012-03, Vol.41 (3), p.457-465</ispartof><rights>TMS 2011</rights><rights>2015 INIST-CNRS</rights><rights>TMS 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3267-22e0d7e04ae6fee6aed0b2bd5c774d2a4f0042b42f183778b3a516c2ddb56db73</citedby><cites>FETCH-LOGICAL-c3267-22e0d7e04ae6fee6aed0b2bd5c774d2a4f0042b42f183778b3a516c2ddb56db73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11664-011-1794-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11664-011-1794-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25785308$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Nipoti, R.</creatorcontrib><creatorcontrib>Nath, A.</creatorcontrib><creatorcontrib>Qadri, S.B.</creatorcontrib><creatorcontrib>Tian, Y-L.</creatorcontrib><creatorcontrib>Albonetti, C.</creatorcontrib><creatorcontrib>Carnera, A.</creatorcontrib><creatorcontrib>Rao, Mulpuri V.</creatorcontrib><title>High-Dose Phosphorus-Implanted 4H-SiC: Microwave and Conventional Post-Implantation Annealing at Temperatures ≥1700°C</title><title>Journal of electronic materials</title><addtitle>Journal of Elec Materi</addtitle><description>Semi-insulating 4H-SiC ⟨0001⟩ wafers have been phosphorus ion implanted at 500°C to obtain phosphorus box depth profiles with dopant concentration from 5 × 10 19  cm −3 to 8 × 10 20  cm −3 . These samples have been annealed by microwave and conventional inductively heated systems in the temperature range 1700°C to 2050°C. Resistivity, Hall electron density, and Hall mobility of the phosphorus-implanted and annealed 4H-SiC layers have been measured in the temperature range from room temperature to 450°C. The high-resolution x-ray diffraction and rocking curve of both virgin and processed 4H-SiC samples have been analyzed to obtain the sample crystal quality up to about 3  μ m depth from the wafer surface. For both increasing implanted phosphorus concentration and increasing post-implantation annealing temperature the implanted material resistivity decreases to an asymptotic value of about 1.5 × 10 −3  Ω cm. Increasing the implanted phosphorus concentration and post-implantation annealing temperature beyond 4 × 10 20  cm −3 and 2000°C, respectively, does not bring any apparent benefit with respect to the minimum obtainable resistivity. Sheet resistance and sheet electron density increase with increasing measurement temperature. Electron density saturates at 1.5 × 10 20  cm −3 for implanted phosphorus plateau values ≥4 × 10 20  cm −3 , irrespective of the post-implantation annealing method. Implantation produces an increase of the lattice parameter in the bulk 4H-SiC underneath the phosphorus-implanted layer. Microwave and conventional annealing produce a further increase of the lattice parameter in such a depth region and an equivalent recovered lattice in the phosphorus-implanted layers.</description><subject>Annealing</subject><subject>Applied sciences</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Electronics</subject><subject>Electronics and Microelectronics</subject><subject>Exact sciences and technology</subject><subject>Instrumentation</subject><subject>Ion radiation effects</subject><subject>Materials</subject><subject>Materials Science</subject><subject>Optical and Electronic Materials</subject><subject>Phosphorus</subject><subject>Physical radiation effects, radiation damage</subject><subject>Physics</subject><subject>Solid State Physics</subject><subject>Structure of solids and liquids; crystallography</subject><subject>Temperature effects</subject><subject>Transplants &amp; implants</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kE2O1DAQhS0EEs3AAdhZSCwNLsc_GXaj8NMjDWIkBomdVYkr3Rml7WCnBzgCB2HPGTgKJyGtHmDFqqSq9z69eow9BvkMpHTPC4C1WkgAAe5UC3eHrcDoSkBtP95lK1lZEEZV5j57UMq1lGCghhX7sh42W_EyFeKX21Smbcr7Is5304hxpsD1Wrwfmhf87dDl9BlviGMMvEnxhuI8pIgjv0xl_uPAw46fxUg4DnHDceZXtJso47zPVPivb9_BSfnzR_OQ3etxLPTodp6wD69fXTVrcfHuzXlzdiG6SlknlCIZHEmNZHsiixRkq9pgOud0UKh7KbVqteqhrpyr2woN2E6F0BobWledsCdH7pTTpz2V2V-nfV5yF38K9QKpQS8iOIqWJ0vJ1PspDzvMXz1If-jXH_v1S7_-0K8_gJ_egrF0OPYZYzeUv0ZlXG0qWS86ddSV5RQ3lP8F-D_8NycjjIY</recordid><startdate>201203</startdate><enddate>201203</enddate><creator>Nipoti, R.</creator><creator>Nath, A.</creator><creator>Qadri, S.B.</creator><creator>Tian, Y-L.</creator><creator>Albonetti, C.</creator><creator>Carnera, A.</creator><creator>Rao, Mulpuri V.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>201203</creationdate><title>High-Dose Phosphorus-Implanted 4H-SiC: Microwave and Conventional Post-Implantation Annealing at Temperatures ≥1700°C</title><author>Nipoti, R. ; Nath, A. ; Qadri, S.B. ; Tian, Y-L. ; Albonetti, C. ; Carnera, A. ; Rao, Mulpuri V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3267-22e0d7e04ae6fee6aed0b2bd5c774d2a4f0042b42f183778b3a516c2ddb56db73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Annealing</topic><topic>Applied sciences</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Electronics</topic><topic>Electronics and Microelectronics</topic><topic>Exact sciences and technology</topic><topic>Instrumentation</topic><topic>Ion radiation effects</topic><topic>Materials</topic><topic>Materials Science</topic><topic>Optical and Electronic Materials</topic><topic>Phosphorus</topic><topic>Physical radiation effects, radiation damage</topic><topic>Physics</topic><topic>Solid State Physics</topic><topic>Structure of solids and liquids; crystallography</topic><topic>Temperature effects</topic><topic>Transplants &amp; implants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nipoti, R.</creatorcontrib><creatorcontrib>Nath, A.</creatorcontrib><creatorcontrib>Qadri, S.B.</creatorcontrib><creatorcontrib>Tian, Y-L.</creatorcontrib><creatorcontrib>Albonetti, C.</creatorcontrib><creatorcontrib>Carnera, A.</creatorcontrib><creatorcontrib>Rao, Mulpuri V.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nipoti, R.</au><au>Nath, A.</au><au>Qadri, S.B.</au><au>Tian, Y-L.</au><au>Albonetti, C.</au><au>Carnera, A.</au><au>Rao, Mulpuri V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-Dose Phosphorus-Implanted 4H-SiC: Microwave and Conventional Post-Implantation Annealing at Temperatures ≥1700°C</atitle><jtitle>Journal of electronic materials</jtitle><stitle>Journal of Elec Materi</stitle><date>2012-03</date><risdate>2012</risdate><volume>41</volume><issue>3</issue><spage>457</spage><epage>465</epage><pages>457-465</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><coden>JECMA5</coden><abstract>Semi-insulating 4H-SiC ⟨0001⟩ wafers have been phosphorus ion implanted at 500°C to obtain phosphorus box depth profiles with dopant concentration from 5 × 10 19  cm −3 to 8 × 10 20  cm −3 . These samples have been annealed by microwave and conventional inductively heated systems in the temperature range 1700°C to 2050°C. Resistivity, Hall electron density, and Hall mobility of the phosphorus-implanted and annealed 4H-SiC layers have been measured in the temperature range from room temperature to 450°C. The high-resolution x-ray diffraction and rocking curve of both virgin and processed 4H-SiC samples have been analyzed to obtain the sample crystal quality up to about 3  μ m depth from the wafer surface. For both increasing implanted phosphorus concentration and increasing post-implantation annealing temperature the implanted material resistivity decreases to an asymptotic value of about 1.5 × 10 −3  Ω cm. Increasing the implanted phosphorus concentration and post-implantation annealing temperature beyond 4 × 10 20  cm −3 and 2000°C, respectively, does not bring any apparent benefit with respect to the minimum obtainable resistivity. Sheet resistance and sheet electron density increase with increasing measurement temperature. Electron density saturates at 1.5 × 10 20  cm −3 for implanted phosphorus plateau values ≥4 × 10 20  cm −3 , irrespective of the post-implantation annealing method. Implantation produces an increase of the lattice parameter in the bulk 4H-SiC underneath the phosphorus-implanted layer. Microwave and conventional annealing produce a further increase of the lattice parameter in such a depth region and an equivalent recovered lattice in the phosphorus-implanted layers.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s11664-011-1794-7</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0361-5235
ispartof Journal of electronic materials, 2012-03, Vol.41 (3), p.457-465
issn 0361-5235
1543-186X
language eng
recordid cdi_proquest_journals_918774814
source SpringerLink Journals - AutoHoldings
subjects Annealing
Applied sciences
Characterization and Evaluation of Materials
Chemistry and Materials Science
Condensed matter: structure, mechanical and thermal properties
Electronics
Electronics and Microelectronics
Exact sciences and technology
Instrumentation
Ion radiation effects
Materials
Materials Science
Optical and Electronic Materials
Phosphorus
Physical radiation effects, radiation damage
Physics
Solid State Physics
Structure of solids and liquids
crystallography
Temperature effects
Transplants & implants
title High-Dose Phosphorus-Implanted 4H-SiC: Microwave and Conventional Post-Implantation Annealing at Temperatures ≥1700°C
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T05%3A05%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-Dose%20Phosphorus-Implanted%204H-SiC:%20Microwave%20and%20Conventional%20Post-Implantation%20Annealing%20at%20Temperatures%20%E2%89%A51700%C2%B0C&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=Nipoti,%20R.&rft.date=2012-03&rft.volume=41&rft.issue=3&rft.spage=457&rft.epage=465&rft.pages=457-465&rft.issn=0361-5235&rft.eissn=1543-186X&rft.coden=JECMA5&rft_id=info:doi/10.1007/s11664-011-1794-7&rft_dat=%3Cproquest_cross%3E2574408941%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=918774814&rft_id=info:pmid/&rfr_iscdi=true