A Powerdomain Construction
We develop a powerdomain construction, $\mathcal{P}[ \cdot ]$, which is analogous to the powerset construction and also fits in with the usual sum, product and exponentiation constructions on domains. The desire for such a construction arises when considering programming languages with nondeterminis...
Gespeichert in:
Veröffentlicht in: | SIAM journal on computing 1976-09, Vol.5 (3), p.452-487 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 487 |
---|---|
container_issue | 3 |
container_start_page | 452 |
container_title | SIAM journal on computing |
container_volume | 5 |
creator | Plotkin, G. D. |
description | We develop a powerdomain construction, $\mathcal{P}[ \cdot ]$, which is analogous to the powerset construction and also fits in with the usual sum, product and exponentiation constructions on domains. The desire for such a construction arises when considering programming languages with nondeterministic features or parallel features treated in a nondeterministic way. We hope to achieve a natural, fully abstract semantics in which such equivalences as $(p\textit{ par } p) = (q\textit{ par }p)$ hold. The domain ($D \to $ Truthvalues) is not the right one, and instead we take the (finitely) generable subsets of $D$. When $D$ is discrete they are ordered in an elementwise fashion. In the general case they are given the coarsest ordering consistent, in an appropriate sense, with the ordering given in the discrete case. We then find a restricted class of algebraic inductive partial orders which is closed under $\mathcal{P}[ \cdot ]$ as well as the sum, product and exponentiation constructions. This class permits the solution of recursive domain equations, and we give some illustrative semantics using $\mathcal{P}[ \cdot ]$. It remains to be seen if our powerdomain construction does give rise to fully abstract semantics, although such natural equivalences as the above do hold. The major deficiency is the lack of a convincing treatment of the fair parallel construct. |
doi_str_mv | 10.1137/0205035 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_918507179</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2573010861</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1305-720aed028ad869217f0e733ebc1cd381deec1938402ae9ab7598e82b6e53205b3</originalsourceid><addsrcrecordid>eNotj01LxDAURYMoWEdx72pw46r6Xl4zSZZD8QsGdKHrkKav0MFpxqRF_PdWZlZ3c7jnXiGuEe4RST-ABAWkTkSBYFWpEfFUFABWl4qsPhcXOW8BsKqQCnGzXr7HH05t3Pl-WNZxyGOawtjH4VKcdf4r89UxF-Lz6fGjfik3b8-v9XpTBiSYBRI8tyCNb83KStQdsCbiJmBoyWDLHNCSqUB6tr7Ryho2slmxonlqQwtxe-jdp_g9cR7dNk5pmJXOolGgUdsZujtAIcWcE3dun_qdT78Owf3_dsff9AdZVkb4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>918507179</pqid></control><display><type>article</type><title>A Powerdomain Construction</title><source>SIAM Journals Online</source><creator>Plotkin, G. D.</creator><creatorcontrib>Plotkin, G. D.</creatorcontrib><description>We develop a powerdomain construction, $\mathcal{P}[ \cdot ]$, which is analogous to the powerset construction and also fits in with the usual sum, product and exponentiation constructions on domains. The desire for such a construction arises when considering programming languages with nondeterministic features or parallel features treated in a nondeterministic way. We hope to achieve a natural, fully abstract semantics in which such equivalences as $(p\textit{ par } p) = (q\textit{ par }p)$ hold. The domain ($D \to $ Truthvalues) is not the right one, and instead we take the (finitely) generable subsets of $D$. When $D$ is discrete they are ordered in an elementwise fashion. In the general case they are given the coarsest ordering consistent, in an appropriate sense, with the ordering given in the discrete case. We then find a restricted class of algebraic inductive partial orders which is closed under $\mathcal{P}[ \cdot ]$ as well as the sum, product and exponentiation constructions. This class permits the solution of recursive domain equations, and we give some illustrative semantics using $\mathcal{P}[ \cdot ]$. It remains to be seen if our powerdomain construction does give rise to fully abstract semantics, although such natural equivalences as the above do hold. The major deficiency is the lack of a convincing treatment of the fair parallel construct.</description><identifier>ISSN: 0097-5397</identifier><identifier>EISSN: 1095-7111</identifier><identifier>DOI: 10.1137/0205035</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Construction ; Initial public offerings ; Programming languages ; Semantics</subject><ispartof>SIAM journal on computing, 1976-09, Vol.5 (3), p.452-487</ispartof><rights>[Copyright] © 1976 © Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1305-720aed028ad869217f0e733ebc1cd381deec1938402ae9ab7598e82b6e53205b3</citedby><cites>FETCH-LOGICAL-c1305-720aed028ad869217f0e733ebc1cd381deec1938402ae9ab7598e82b6e53205b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3171,27901,27902</link.rule.ids></links><search><creatorcontrib>Plotkin, G. D.</creatorcontrib><title>A Powerdomain Construction</title><title>SIAM journal on computing</title><description>We develop a powerdomain construction, $\mathcal{P}[ \cdot ]$, which is analogous to the powerset construction and also fits in with the usual sum, product and exponentiation constructions on domains. The desire for such a construction arises when considering programming languages with nondeterministic features or parallel features treated in a nondeterministic way. We hope to achieve a natural, fully abstract semantics in which such equivalences as $(p\textit{ par } p) = (q\textit{ par }p)$ hold. The domain ($D \to $ Truthvalues) is not the right one, and instead we take the (finitely) generable subsets of $D$. When $D$ is discrete they are ordered in an elementwise fashion. In the general case they are given the coarsest ordering consistent, in an appropriate sense, with the ordering given in the discrete case. We then find a restricted class of algebraic inductive partial orders which is closed under $\mathcal{P}[ \cdot ]$ as well as the sum, product and exponentiation constructions. This class permits the solution of recursive domain equations, and we give some illustrative semantics using $\mathcal{P}[ \cdot ]$. It remains to be seen if our powerdomain construction does give rise to fully abstract semantics, although such natural equivalences as the above do hold. The major deficiency is the lack of a convincing treatment of the fair parallel construct.</description><subject>Construction</subject><subject>Initial public offerings</subject><subject>Programming languages</subject><subject>Semantics</subject><issn>0097-5397</issn><issn>1095-7111</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1976</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNotj01LxDAURYMoWEdx72pw46r6Xl4zSZZD8QsGdKHrkKav0MFpxqRF_PdWZlZ3c7jnXiGuEe4RST-ABAWkTkSBYFWpEfFUFABWl4qsPhcXOW8BsKqQCnGzXr7HH05t3Pl-WNZxyGOawtjH4VKcdf4r89UxF-Lz6fGjfik3b8-v9XpTBiSYBRI8tyCNb83KStQdsCbiJmBoyWDLHNCSqUB6tr7Ryho2slmxonlqQwtxe-jdp_g9cR7dNk5pmJXOolGgUdsZujtAIcWcE3dun_qdT78Owf3_dsff9AdZVkb4</recordid><startdate>197609</startdate><enddate>197609</enddate><creator>Plotkin, G. D.</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0W</scope><scope>U9A</scope></search><sort><creationdate>197609</creationdate><title>A Powerdomain Construction</title><author>Plotkin, G. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1305-720aed028ad869217f0e733ebc1cd381deec1938402ae9ab7598e82b6e53205b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1976</creationdate><topic>Construction</topic><topic>Initial public offerings</topic><topic>Programming languages</topic><topic>Semantics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Plotkin, G. D.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career & Technical Education Database</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>SIAM journal on computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Plotkin, G. D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Powerdomain Construction</atitle><jtitle>SIAM journal on computing</jtitle><date>1976-09</date><risdate>1976</risdate><volume>5</volume><issue>3</issue><spage>452</spage><epage>487</epage><pages>452-487</pages><issn>0097-5397</issn><eissn>1095-7111</eissn><abstract>We develop a powerdomain construction, $\mathcal{P}[ \cdot ]$, which is analogous to the powerset construction and also fits in with the usual sum, product and exponentiation constructions on domains. The desire for such a construction arises when considering programming languages with nondeterministic features or parallel features treated in a nondeterministic way. We hope to achieve a natural, fully abstract semantics in which such equivalences as $(p\textit{ par } p) = (q\textit{ par }p)$ hold. The domain ($D \to $ Truthvalues) is not the right one, and instead we take the (finitely) generable subsets of $D$. When $D$ is discrete they are ordered in an elementwise fashion. In the general case they are given the coarsest ordering consistent, in an appropriate sense, with the ordering given in the discrete case. We then find a restricted class of algebraic inductive partial orders which is closed under $\mathcal{P}[ \cdot ]$ as well as the sum, product and exponentiation constructions. This class permits the solution of recursive domain equations, and we give some illustrative semantics using $\mathcal{P}[ \cdot ]$. It remains to be seen if our powerdomain construction does give rise to fully abstract semantics, although such natural equivalences as the above do hold. The major deficiency is the lack of a convincing treatment of the fair parallel construct.</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/0205035</doi><tpages>36</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0097-5397 |
ispartof | SIAM journal on computing, 1976-09, Vol.5 (3), p.452-487 |
issn | 0097-5397 1095-7111 |
language | eng |
recordid | cdi_proquest_journals_918507179 |
source | SIAM Journals Online |
subjects | Construction Initial public offerings Programming languages Semantics |
title | A Powerdomain Construction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T15%3A45%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Powerdomain%20Construction&rft.jtitle=SIAM%20journal%20on%20computing&rft.au=Plotkin,%20G.%20D.&rft.date=1976-09&rft.volume=5&rft.issue=3&rft.spage=452&rft.epage=487&rft.pages=452-487&rft.issn=0097-5397&rft.eissn=1095-7111&rft_id=info:doi/10.1137/0205035&rft_dat=%3Cproquest_cross%3E2573010861%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=918507179&rft_id=info:pmid/&rfr_iscdi=true |