Addition Requirements for Rational Functions

A notion of rank or independence for arbitrary sets of rational functions is developed, which bounds from below the number of additions and subtractions required of all straight-line algorithms which compute those functions. This permits a uniform derivation of the best lower bounds known for a numb...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on computing 1977-03, Vol.6 (1), p.188-199
Hauptverfasser: Kirkpatrick, David G., Kedem, Zvi M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 199
container_issue 1
container_start_page 188
container_title SIAM journal on computing
container_volume 6
creator Kirkpatrick, David G.
Kedem, Zvi M.
description A notion of rank or independence for arbitrary sets of rational functions is developed, which bounds from below the number of additions and subtractions required of all straight-line algorithms which compute those functions. This permits a uniform derivation of the best lower bounds known for a number of familiar sets of rational functions. The result is proved without the use of substitution arguments. This not only provides an interesting contrast to standard approaches for arithmetic lower bounds, but also allows the algebraic setting to be somewhat generalized.
doi_str_mv 10.1137/0206015
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_918499722</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2572967771</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1305-d32fea67b54ead534ca467e582763c79b5aec04f3fed012a0450a5a01dc905493</originalsourceid><addsrcrecordid>eNotkE1Lw0AYhBdRMFbxLwQvXox93_3Ido-lWBUKhaLn5e1-QEqbtLvJwX9vQ3uaYXgYhmHsGeEdUegpcKgB1Q0rEIyqNCLesgLA6EoJo-_ZQ847AJQSRcHe5t43fdO15SachiaFQ2j7XMYulRsac9qXy6F1o82P7C7SPoenq07Y7_LjZ_FVrdaf34v5qnIoQFVe8Bio1lslA3klpCNZ66BmXNfCabNVFBzIKGLwgJxAKiBFgN4ZUNKICXu59B5TdxpC7u2uG9J5SrYGZ9IYzfkZer1ALnU5pxDtMTUHSn8WwY5P2OsT4h8N504G</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>918499722</pqid></control><display><type>article</type><title>Addition Requirements for Rational Functions</title><source>SIAM Journals Online</source><creator>Kirkpatrick, David G. ; Kedem, Zvi M.</creator><creatorcontrib>Kirkpatrick, David G. ; Kedem, Zvi M.</creatorcontrib><description>A notion of rank or independence for arbitrary sets of rational functions is developed, which bounds from below the number of additions and subtractions required of all straight-line algorithms which compute those functions. This permits a uniform derivation of the best lower bounds known for a number of familiar sets of rational functions. The result is proved without the use of substitution arguments. This not only provides an interesting contrast to standard approaches for arithmetic lower bounds, but also allows the algebraic setting to be somewhat generalized.</description><identifier>ISSN: 0097-5397</identifier><identifier>EISSN: 1095-7111</identifier><identifier>DOI: 10.1137/0206015</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Algorithms ; Codes ; Polynomials</subject><ispartof>SIAM journal on computing, 1977-03, Vol.6 (1), p.188-199</ispartof><rights>[Copyright] © 1977 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1305-d32fea67b54ead534ca467e582763c79b5aec04f3fed012a0450a5a01dc905493</citedby><cites>FETCH-LOGICAL-c1305-d32fea67b54ead534ca467e582763c79b5aec04f3fed012a0450a5a01dc905493</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3171,27901,27902</link.rule.ids></links><search><creatorcontrib>Kirkpatrick, David G.</creatorcontrib><creatorcontrib>Kedem, Zvi M.</creatorcontrib><title>Addition Requirements for Rational Functions</title><title>SIAM journal on computing</title><description>A notion of rank or independence for arbitrary sets of rational functions is developed, which bounds from below the number of additions and subtractions required of all straight-line algorithms which compute those functions. This permits a uniform derivation of the best lower bounds known for a number of familiar sets of rational functions. The result is proved without the use of substitution arguments. This not only provides an interesting contrast to standard approaches for arithmetic lower bounds, but also allows the algebraic setting to be somewhat generalized.</description><subject>Algorithms</subject><subject>Codes</subject><subject>Polynomials</subject><issn>0097-5397</issn><issn>1095-7111</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1977</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNotkE1Lw0AYhBdRMFbxLwQvXox93_3Ido-lWBUKhaLn5e1-QEqbtLvJwX9vQ3uaYXgYhmHsGeEdUegpcKgB1Q0rEIyqNCLesgLA6EoJo-_ZQ847AJQSRcHe5t43fdO15SachiaFQ2j7XMYulRsac9qXy6F1o82P7C7SPoenq07Y7_LjZ_FVrdaf34v5qnIoQFVe8Bio1lslA3klpCNZ66BmXNfCabNVFBzIKGLwgJxAKiBFgN4ZUNKICXu59B5TdxpC7u2uG9J5SrYGZ9IYzfkZer1ALnU5pxDtMTUHSn8WwY5P2OsT4h8N504G</recordid><startdate>197703</startdate><enddate>197703</enddate><creator>Kirkpatrick, David G.</creator><creator>Kedem, Zvi M.</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0W</scope><scope>U9A</scope></search><sort><creationdate>197703</creationdate><title>Addition Requirements for Rational Functions</title><author>Kirkpatrick, David G. ; Kedem, Zvi M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1305-d32fea67b54ead534ca467e582763c79b5aec04f3fed012a0450a5a01dc905493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1977</creationdate><topic>Algorithms</topic><topic>Codes</topic><topic>Polynomials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kirkpatrick, David G.</creatorcontrib><creatorcontrib>Kedem, Zvi M.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career &amp; Technical Education Database</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>SIAM journal on computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kirkpatrick, David G.</au><au>Kedem, Zvi M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Addition Requirements for Rational Functions</atitle><jtitle>SIAM journal on computing</jtitle><date>1977-03</date><risdate>1977</risdate><volume>6</volume><issue>1</issue><spage>188</spage><epage>199</epage><pages>188-199</pages><issn>0097-5397</issn><eissn>1095-7111</eissn><abstract>A notion of rank or independence for arbitrary sets of rational functions is developed, which bounds from below the number of additions and subtractions required of all straight-line algorithms which compute those functions. This permits a uniform derivation of the best lower bounds known for a number of familiar sets of rational functions. The result is proved without the use of substitution arguments. This not only provides an interesting contrast to standard approaches for arithmetic lower bounds, but also allows the algebraic setting to be somewhat generalized.</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/0206015</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0097-5397
ispartof SIAM journal on computing, 1977-03, Vol.6 (1), p.188-199
issn 0097-5397
1095-7111
language eng
recordid cdi_proquest_journals_918499722
source SIAM Journals Online
subjects Algorithms
Codes
Polynomials
title Addition Requirements for Rational Functions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T15%3A29%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Addition%20Requirements%20for%20Rational%20Functions&rft.jtitle=SIAM%20journal%20on%20computing&rft.au=Kirkpatrick,%20David%20G.&rft.date=1977-03&rft.volume=6&rft.issue=1&rft.spage=188&rft.epage=199&rft.pages=188-199&rft.issn=0097-5397&rft.eissn=1095-7111&rft_id=info:doi/10.1137/0206015&rft_dat=%3Cproquest_cross%3E2572967771%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=918499722&rft_id=info:pmid/&rfr_iscdi=true