A Family of Algorithms for Powering Sparse Polynomials

We discuss four new algorithms from a family of algorithms for computing integer powers of sparse polynomials. The four algorithms form a sequence of successively better algorithms; even the first member of the sequence shows an improvement in the leading term of the cost function in comparison with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on computing 1979-11, Vol.8 (4), p.626-644
Hauptverfasser: Probst, David K., Alagar, Vangalur S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 644
container_issue 4
container_start_page 626
container_title SIAM journal on computing
container_volume 8
creator Probst, David K.
Alagar, Vangalur S.
description We discuss four new algorithms from a family of algorithms for computing integer powers of sparse polynomials. The four algorithms form a sequence of successively better algorithms; even the first member of the sequence shows an improvement in the leading term of the cost function in comparison with the best previously known binomial-expansion algorithm. To quote one result, if $f$ is a 32-term sparse polynomial, computing $f * f^9 $ takes $8.75 \times 10^9 $ multiplications, while the best new algorithm computes $f^{10} $ from scratch using $1.125 \times 10^9 $ multiplications. The time and space analyses given support the conjecture that the best new algorithm is optimal for time and space within the family of sequential binomial-expansion algorithms for this problem. If the input polynomial has $t$ terms, then the $n$th power may be computed by this algorithm with a time complexity of \[ \frac{{t^n }}{{n!}} + t^{n - 1} \left[ \frac{1}{{2(n - 2)!}} + \frac{1}{{2^{n - 2} (n - 1)!}}\right] + O(t^{n - 2} ),\quad n > 2 , \] and a space complexity of \[ \frac{{t^{n - 1} }}{{2^{2n - 4} (n - 1)!}} + O(t^{n - 2} ),\quad n > 2. \]
doi_str_mv 10.1137/0208050
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_918468230</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2572619301</sourcerecordid><originalsourceid>FETCH-LOGICAL-c182t-979df9de5c55e6fc6faa4f939b14b5afe8d5f7ce0061bf4c1f30af0132c02f133</originalsourceid><addsrcrecordid>eNotkMFKxDAURYMoWEfxF4IbV9X3mqZtlmVwVBhQUNclTfPGDm1Tkw7Sv7cyszpcuNwLh7FbhAdEkT9CAgVIOGMRgpJxjojnLAJQeSyFyi_ZVQh7AExTFBHLSr7RfdvN3BEvu53z7fTdB07O83f3a3077PjHqH2wS-7mwfWt7sI1u6AF9ubEFfvaPH2uX-Lt2_PrutzGBotkilWuGlKNlUZKm5HJSOuUlFA1prXUZItGUm4sQIY1pQZJgCZAkRhICIVYsbvj7ujdz8GGqdq7gx-Wy0phkWZFImAp3R9LxrsQvKVq9G2v_VwhVP9OqpMT8QfR1VI_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>918468230</pqid></control><display><type>article</type><title>A Family of Algorithms for Powering Sparse Polynomials</title><source>SIAM Journals Online</source><creator>Probst, David K. ; Alagar, Vangalur S.</creator><creatorcontrib>Probst, David K. ; Alagar, Vangalur S.</creatorcontrib><description>We discuss four new algorithms from a family of algorithms for computing integer powers of sparse polynomials. The four algorithms form a sequence of successively better algorithms; even the first member of the sequence shows an improvement in the leading term of the cost function in comparison with the best previously known binomial-expansion algorithm. To quote one result, if $f$ is a 32-term sparse polynomial, computing $f * f^9 $ takes $8.75 \times 10^9 $ multiplications, while the best new algorithm computes $f^{10} $ from scratch using $1.125 \times 10^9 $ multiplications. The time and space analyses given support the conjecture that the best new algorithm is optimal for time and space within the family of sequential binomial-expansion algorithms for this problem. If the input polynomial has $t$ terms, then the $n$th power may be computed by this algorithm with a time complexity of \[ \frac{{t^n }}{{n!}} + t^{n - 1} \left[ \frac{1}{{2(n - 2)!}} + \frac{1}{{2^{n - 2} (n - 1)!}}\right] + O(t^{n - 2} ),\quad n &gt; 2 , \] and a space complexity of \[ \frac{{t^{n - 1} }}{{2^{2n - 4} (n - 1)!}} + O(t^{n - 2} ),\quad n &gt; 2. \]</description><identifier>ISSN: 0097-5397</identifier><identifier>EISSN: 1095-7111</identifier><identifier>DOI: 10.1137/0208050</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Algorithms ; Costs ; Polynomials</subject><ispartof>SIAM journal on computing, 1979-11, Vol.8 (4), p.626-644</ispartof><rights>[Copyright] © 1979 © Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c182t-979df9de5c55e6fc6faa4f939b14b5afe8d5f7ce0061bf4c1f30af0132c02f133</citedby><cites>FETCH-LOGICAL-c182t-979df9de5c55e6fc6faa4f939b14b5afe8d5f7ce0061bf4c1f30af0132c02f133</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3170,27903,27904</link.rule.ids></links><search><creatorcontrib>Probst, David K.</creatorcontrib><creatorcontrib>Alagar, Vangalur S.</creatorcontrib><title>A Family of Algorithms for Powering Sparse Polynomials</title><title>SIAM journal on computing</title><description>We discuss four new algorithms from a family of algorithms for computing integer powers of sparse polynomials. The four algorithms form a sequence of successively better algorithms; even the first member of the sequence shows an improvement in the leading term of the cost function in comparison with the best previously known binomial-expansion algorithm. To quote one result, if $f$ is a 32-term sparse polynomial, computing $f * f^9 $ takes $8.75 \times 10^9 $ multiplications, while the best new algorithm computes $f^{10} $ from scratch using $1.125 \times 10^9 $ multiplications. The time and space analyses given support the conjecture that the best new algorithm is optimal for time and space within the family of sequential binomial-expansion algorithms for this problem. If the input polynomial has $t$ terms, then the $n$th power may be computed by this algorithm with a time complexity of \[ \frac{{t^n }}{{n!}} + t^{n - 1} \left[ \frac{1}{{2(n - 2)!}} + \frac{1}{{2^{n - 2} (n - 1)!}}\right] + O(t^{n - 2} ),\quad n &gt; 2 , \] and a space complexity of \[ \frac{{t^{n - 1} }}{{2^{2n - 4} (n - 1)!}} + O(t^{n - 2} ),\quad n &gt; 2. \]</description><subject>Algorithms</subject><subject>Costs</subject><subject>Polynomials</subject><issn>0097-5397</issn><issn>1095-7111</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1979</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNotkMFKxDAURYMoWEfxF4IbV9X3mqZtlmVwVBhQUNclTfPGDm1Tkw7Sv7cyszpcuNwLh7FbhAdEkT9CAgVIOGMRgpJxjojnLAJQeSyFyi_ZVQh7AExTFBHLSr7RfdvN3BEvu53z7fTdB07O83f3a3077PjHqH2wS-7mwfWt7sI1u6AF9ubEFfvaPH2uX-Lt2_PrutzGBotkilWuGlKNlUZKm5HJSOuUlFA1prXUZItGUm4sQIY1pQZJgCZAkRhICIVYsbvj7ujdz8GGqdq7gx-Wy0phkWZFImAp3R9LxrsQvKVq9G2v_VwhVP9OqpMT8QfR1VI_</recordid><startdate>19791101</startdate><enddate>19791101</enddate><creator>Probst, David K.</creator><creator>Alagar, Vangalur S.</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0W</scope><scope>U9A</scope></search><sort><creationdate>19791101</creationdate><title>A Family of Algorithms for Powering Sparse Polynomials</title><author>Probst, David K. ; Alagar, Vangalur S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c182t-979df9de5c55e6fc6faa4f939b14b5afe8d5f7ce0061bf4c1f30af0132c02f133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1979</creationdate><topic>Algorithms</topic><topic>Costs</topic><topic>Polynomials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Probst, David K.</creatorcontrib><creatorcontrib>Alagar, Vangalur S.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career &amp; Technical Education Database</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>SIAM journal on computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Probst, David K.</au><au>Alagar, Vangalur S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Family of Algorithms for Powering Sparse Polynomials</atitle><jtitle>SIAM journal on computing</jtitle><date>1979-11-01</date><risdate>1979</risdate><volume>8</volume><issue>4</issue><spage>626</spage><epage>644</epage><pages>626-644</pages><issn>0097-5397</issn><eissn>1095-7111</eissn><abstract>We discuss four new algorithms from a family of algorithms for computing integer powers of sparse polynomials. The four algorithms form a sequence of successively better algorithms; even the first member of the sequence shows an improvement in the leading term of the cost function in comparison with the best previously known binomial-expansion algorithm. To quote one result, if $f$ is a 32-term sparse polynomial, computing $f * f^9 $ takes $8.75 \times 10^9 $ multiplications, while the best new algorithm computes $f^{10} $ from scratch using $1.125 \times 10^9 $ multiplications. The time and space analyses given support the conjecture that the best new algorithm is optimal for time and space within the family of sequential binomial-expansion algorithms for this problem. If the input polynomial has $t$ terms, then the $n$th power may be computed by this algorithm with a time complexity of \[ \frac{{t^n }}{{n!}} + t^{n - 1} \left[ \frac{1}{{2(n - 2)!}} + \frac{1}{{2^{n - 2} (n - 1)!}}\right] + O(t^{n - 2} ),\quad n &gt; 2 , \] and a space complexity of \[ \frac{{t^{n - 1} }}{{2^{2n - 4} (n - 1)!}} + O(t^{n - 2} ),\quad n &gt; 2. \]</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/0208050</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0097-5397
ispartof SIAM journal on computing, 1979-11, Vol.8 (4), p.626-644
issn 0097-5397
1095-7111
language eng
recordid cdi_proquest_journals_918468230
source SIAM Journals Online
subjects Algorithms
Costs
Polynomials
title A Family of Algorithms for Powering Sparse Polynomials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T09%3A09%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Family%20of%20Algorithms%20for%20Powering%20Sparse%20Polynomials&rft.jtitle=SIAM%20journal%20on%20computing&rft.au=Probst,%20David%20K.&rft.date=1979-11-01&rft.volume=8&rft.issue=4&rft.spage=626&rft.epage=644&rft.pages=626-644&rft.issn=0097-5397&rft.eissn=1095-7111&rft_id=info:doi/10.1137/0208050&rft_dat=%3Cproquest_cross%3E2572619301%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=918468230&rft_id=info:pmid/&rfr_iscdi=true