Kinetic Theory Description of Rarefied Gas Flow

In an early paper with H. Bolza and Max Born, von Karman examined the relation between the "collision-dominated" and "collision-free" regimes in the simple case of steady flow or steady heat conduction through a porous medium. Von Karman also formulated the boundary condition at...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Society for Industrial and Applied Mathematics 1965-03, Vol.13 (1), p.278-311
1. Verfasser: Lees, Lester
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 311
container_issue 1
container_start_page 278
container_title Journal of the Society for Industrial and Applied Mathematics
container_volume 13
creator Lees, Lester
description In an early paper with H. Bolza and Max Born, von Karman examined the relation between the "collision-dominated" and "collision-free" regimes in the simple case of steady flow or steady heat conduction through a porous medium. Von Karman also formulated the boundary condition at a gas-solid interface, and showed that the temperature "jump" arises quite naturally from the two-sidedness of the velocity distribution function, independently of any statements about the thermal accommodation coefficient. We reexamine this question of the transition between gas-kinetics and gasdynamics with the aid of the Maxwell moment method, utilizing a two-sided Maxwellian-type distribution as weighting function. The main features deduced from this approach are illustrated by considering two simple examples: (1) steady heat conduction between two concentric cylinders, and between two concentric spheres; (2) the "signaling problem" generated by the sudden motion and heating of an infinite flat plate.
doi_str_mv 10.1137/0113017
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_918261831</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2946405</jstor_id><sourcerecordid>2946405</sourcerecordid><originalsourceid>FETCH-LOGICAL-c203t-bd93800c136dd3a7d112a1c89156f07d033d75d79c839d9c60778429cf1b5d503</originalsourceid><addsrcrecordid>eNo90FFLwzAQB_AgCtYpfgEfii8-1d3lkiZ5lOmmOBBkPpcuSbFlLjPpkH17Kx2-3N3Dj7vjz9g1wj0iqSkMFVCdsIxjqQsSWpyyDGiYBRfynF2k1AGAQi4zNn1tt75vbb769CEe8kefbGx3fRu2eWjy9zr6pvUuX9Qpn2_CzyU7a-pN8lfHPmEf86fV7LlYvi1eZg_LwnKgvlg7QxrAIpXOUa0cIq_RaoOybEA5IHJKOmWsJuOMLUEpLbixDa6lk0ATdjvu3cXwvfepr7qwj9vhZGVQ8xI14YDuRmRjSGn4tNrF9quOhwqh-gujOoYxyJtRdqkP8Z9xI0oBkn4BPk1XAg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>918261831</pqid></control><display><type>article</type><title>Kinetic Theory Description of Rarefied Gas Flow</title><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>LOCUS - SIAM's Online Journal Archive</source><creator>Lees, Lester</creator><creatorcontrib>Lees, Lester</creatorcontrib><description>In an early paper with H. Bolza and Max Born, von Karman examined the relation between the "collision-dominated" and "collision-free" regimes in the simple case of steady flow or steady heat conduction through a porous medium. Von Karman also formulated the boundary condition at a gas-solid interface, and showed that the temperature "jump" arises quite naturally from the two-sidedness of the velocity distribution function, independently of any statements about the thermal accommodation coefficient. We reexamine this question of the transition between gas-kinetics and gasdynamics with the aid of the Maxwell moment method, utilizing a two-sided Maxwellian-type distribution as weighting function. The main features deduced from this approach are illustrated by considering two simple examples: (1) steady heat conduction between two concentric cylinders, and between two concentric spheres; (2) the "signaling problem" generated by the sudden motion and heating of an infinite flat plate.</description><identifier>ISSN: 0368-4245</identifier><identifier>ISSN: 0036-1399</identifier><identifier>EISSN: 2168-3484</identifier><identifier>EISSN: 1095-712X</identifier><identifier>DOI: 10.1137/0113017</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Boundary conditions ; Cylinders ; Flow velocity ; Fluid mechanics ; Gas flow ; Gases ; Heat ; Heat flux ; Heat transfer ; Kinetic theory ; Rarefied gases ; Shear stress ; Spheres ; Temperature ; Velocity ; Wave fronts ; Weighting functions</subject><ispartof>Journal of the Society for Industrial and Applied Mathematics, 1965-03, Vol.13 (1), p.278-311</ispartof><rights>Copyright 1965 Society for Industrial and Applied Mathematics</rights><rights>[Copyright] © 1965 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c203t-bd93800c136dd3a7d112a1c89156f07d033d75d79c839d9c60778429cf1b5d503</citedby><cites>FETCH-LOGICAL-c203t-bd93800c136dd3a7d112a1c89156f07d033d75d79c839d9c60778429cf1b5d503</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2946405$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2946405$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,3184,27923,27924,58016,58020,58249,58253</link.rule.ids></links><search><creatorcontrib>Lees, Lester</creatorcontrib><title>Kinetic Theory Description of Rarefied Gas Flow</title><title>Journal of the Society for Industrial and Applied Mathematics</title><description>In an early paper with H. Bolza and Max Born, von Karman examined the relation between the "collision-dominated" and "collision-free" regimes in the simple case of steady flow or steady heat conduction through a porous medium. Von Karman also formulated the boundary condition at a gas-solid interface, and showed that the temperature "jump" arises quite naturally from the two-sidedness of the velocity distribution function, independently of any statements about the thermal accommodation coefficient. We reexamine this question of the transition between gas-kinetics and gasdynamics with the aid of the Maxwell moment method, utilizing a two-sided Maxwellian-type distribution as weighting function. The main features deduced from this approach are illustrated by considering two simple examples: (1) steady heat conduction between two concentric cylinders, and between two concentric spheres; (2) the "signaling problem" generated by the sudden motion and heating of an infinite flat plate.</description><subject>Boundary conditions</subject><subject>Cylinders</subject><subject>Flow velocity</subject><subject>Fluid mechanics</subject><subject>Gas flow</subject><subject>Gases</subject><subject>Heat</subject><subject>Heat flux</subject><subject>Heat transfer</subject><subject>Kinetic theory</subject><subject>Rarefied gases</subject><subject>Shear stress</subject><subject>Spheres</subject><subject>Temperature</subject><subject>Velocity</subject><subject>Wave fronts</subject><subject>Weighting functions</subject><issn>0368-4245</issn><issn>0036-1399</issn><issn>2168-3484</issn><issn>1095-712X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1965</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNo90FFLwzAQB_AgCtYpfgEfii8-1d3lkiZ5lOmmOBBkPpcuSbFlLjPpkH17Kx2-3N3Dj7vjz9g1wj0iqSkMFVCdsIxjqQsSWpyyDGiYBRfynF2k1AGAQi4zNn1tt75vbb769CEe8kefbGx3fRu2eWjy9zr6pvUuX9Qpn2_CzyU7a-pN8lfHPmEf86fV7LlYvi1eZg_LwnKgvlg7QxrAIpXOUa0cIq_RaoOybEA5IHJKOmWsJuOMLUEpLbixDa6lk0ATdjvu3cXwvfepr7qwj9vhZGVQ8xI14YDuRmRjSGn4tNrF9quOhwqh-gujOoYxyJtRdqkP8Z9xI0oBkn4BPk1XAg</recordid><startdate>19650301</startdate><enddate>19650301</enddate><creator>Lees, Lester</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>U9A</scope></search><sort><creationdate>19650301</creationdate><title>Kinetic Theory Description of Rarefied Gas Flow</title><author>Lees, Lester</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c203t-bd93800c136dd3a7d112a1c89156f07d033d75d79c839d9c60778429cf1b5d503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1965</creationdate><topic>Boundary conditions</topic><topic>Cylinders</topic><topic>Flow velocity</topic><topic>Fluid mechanics</topic><topic>Gas flow</topic><topic>Gases</topic><topic>Heat</topic><topic>Heat flux</topic><topic>Heat transfer</topic><topic>Kinetic theory</topic><topic>Rarefied gases</topic><topic>Shear stress</topic><topic>Spheres</topic><topic>Temperature</topic><topic>Velocity</topic><topic>Wave fronts</topic><topic>Weighting functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lees, Lester</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career &amp; Technical Education Database</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of the Society for Industrial and Applied Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lees, Lester</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kinetic Theory Description of Rarefied Gas Flow</atitle><jtitle>Journal of the Society for Industrial and Applied Mathematics</jtitle><date>1965-03-01</date><risdate>1965</risdate><volume>13</volume><issue>1</issue><spage>278</spage><epage>311</epage><pages>278-311</pages><issn>0368-4245</issn><issn>0036-1399</issn><eissn>2168-3484</eissn><eissn>1095-712X</eissn><abstract>In an early paper with H. Bolza and Max Born, von Karman examined the relation between the "collision-dominated" and "collision-free" regimes in the simple case of steady flow or steady heat conduction through a porous medium. Von Karman also formulated the boundary condition at a gas-solid interface, and showed that the temperature "jump" arises quite naturally from the two-sidedness of the velocity distribution function, independently of any statements about the thermal accommodation coefficient. We reexamine this question of the transition between gas-kinetics and gasdynamics with the aid of the Maxwell moment method, utilizing a two-sided Maxwellian-type distribution as weighting function. The main features deduced from this approach are illustrated by considering two simple examples: (1) steady heat conduction between two concentric cylinders, and between two concentric spheres; (2) the "signaling problem" generated by the sudden motion and heating of an infinite flat plate.</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/0113017</doi><tpages>34</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0368-4245
ispartof Journal of the Society for Industrial and Applied Mathematics, 1965-03, Vol.13 (1), p.278-311
issn 0368-4245
0036-1399
2168-3484
1095-712X
language eng
recordid cdi_proquest_journals_918261831
source JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; LOCUS - SIAM's Online Journal Archive
subjects Boundary conditions
Cylinders
Flow velocity
Fluid mechanics
Gas flow
Gases
Heat
Heat flux
Heat transfer
Kinetic theory
Rarefied gases
Shear stress
Spheres
Temperature
Velocity
Wave fronts
Weighting functions
title Kinetic Theory Description of Rarefied Gas Flow
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T00%3A37%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kinetic%20Theory%20Description%20of%20Rarefied%20Gas%20Flow&rft.jtitle=Journal%20of%20the%20Society%20for%20Industrial%20and%20Applied%20Mathematics&rft.au=Lees,%20Lester&rft.date=1965-03-01&rft.volume=13&rft.issue=1&rft.spage=278&rft.epage=311&rft.pages=278-311&rft.issn=0368-4245&rft.eissn=2168-3484&rft_id=info:doi/10.1137/0113017&rft_dat=%3Cjstor_proqu%3E2946405%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=918261831&rft_id=info:pmid/&rft_jstor_id=2946405&rfr_iscdi=true