Kinetic Theory Description of Rarefied Gas Flow
In an early paper with H. Bolza and Max Born, von Karman examined the relation between the "collision-dominated" and "collision-free" regimes in the simple case of steady flow or steady heat conduction through a porous medium. Von Karman also formulated the boundary condition at...
Gespeichert in:
Veröffentlicht in: | Journal of the Society for Industrial and Applied Mathematics 1965-03, Vol.13 (1), p.278-311 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 311 |
---|---|
container_issue | 1 |
container_start_page | 278 |
container_title | Journal of the Society for Industrial and Applied Mathematics |
container_volume | 13 |
creator | Lees, Lester |
description | In an early paper with H. Bolza and Max Born, von Karman examined the relation between the "collision-dominated" and "collision-free" regimes in the simple case of steady flow or steady heat conduction through a porous medium. Von Karman also formulated the boundary condition at a gas-solid interface, and showed that the temperature "jump" arises quite naturally from the two-sidedness of the velocity distribution function, independently of any statements about the thermal accommodation coefficient. We reexamine this question of the transition between gas-kinetics and gasdynamics with the aid of the Maxwell moment method, utilizing a two-sided Maxwellian-type distribution as weighting function. The main features deduced from this approach are illustrated by considering two simple examples: (1) steady heat conduction between two concentric cylinders, and between two concentric spheres; (2) the "signaling problem" generated by the sudden motion and heating of an infinite flat plate. |
doi_str_mv | 10.1137/0113017 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_918261831</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2946405</jstor_id><sourcerecordid>2946405</sourcerecordid><originalsourceid>FETCH-LOGICAL-c203t-bd93800c136dd3a7d112a1c89156f07d033d75d79c839d9c60778429cf1b5d503</originalsourceid><addsrcrecordid>eNo90FFLwzAQB_AgCtYpfgEfii8-1d3lkiZ5lOmmOBBkPpcuSbFlLjPpkH17Kx2-3N3Dj7vjz9g1wj0iqSkMFVCdsIxjqQsSWpyyDGiYBRfynF2k1AGAQi4zNn1tt75vbb769CEe8kefbGx3fRu2eWjy9zr6pvUuX9Qpn2_CzyU7a-pN8lfHPmEf86fV7LlYvi1eZg_LwnKgvlg7QxrAIpXOUa0cIq_RaoOybEA5IHJKOmWsJuOMLUEpLbixDa6lk0ATdjvu3cXwvfepr7qwj9vhZGVQ8xI14YDuRmRjSGn4tNrF9quOhwqh-gujOoYxyJtRdqkP8Z9xI0oBkn4BPk1XAg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>918261831</pqid></control><display><type>article</type><title>Kinetic Theory Description of Rarefied Gas Flow</title><source>JSTOR Mathematics & Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>LOCUS - SIAM's Online Journal Archive</source><creator>Lees, Lester</creator><creatorcontrib>Lees, Lester</creatorcontrib><description>In an early paper with H. Bolza and Max Born, von Karman examined the relation between the "collision-dominated" and "collision-free" regimes in the simple case of steady flow or steady heat conduction through a porous medium. Von Karman also formulated the boundary condition at a gas-solid interface, and showed that the temperature "jump" arises quite naturally from the two-sidedness of the velocity distribution function, independently of any statements about the thermal accommodation coefficient. We reexamine this question of the transition between gas-kinetics and gasdynamics with the aid of the Maxwell moment method, utilizing a two-sided Maxwellian-type distribution as weighting function. The main features deduced from this approach are illustrated by considering two simple examples: (1) steady heat conduction between two concentric cylinders, and between two concentric spheres; (2) the "signaling problem" generated by the sudden motion and heating of an infinite flat plate.</description><identifier>ISSN: 0368-4245</identifier><identifier>ISSN: 0036-1399</identifier><identifier>EISSN: 2168-3484</identifier><identifier>EISSN: 1095-712X</identifier><identifier>DOI: 10.1137/0113017</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Boundary conditions ; Cylinders ; Flow velocity ; Fluid mechanics ; Gas flow ; Gases ; Heat ; Heat flux ; Heat transfer ; Kinetic theory ; Rarefied gases ; Shear stress ; Spheres ; Temperature ; Velocity ; Wave fronts ; Weighting functions</subject><ispartof>Journal of the Society for Industrial and Applied Mathematics, 1965-03, Vol.13 (1), p.278-311</ispartof><rights>Copyright 1965 Society for Industrial and Applied Mathematics</rights><rights>[Copyright] © 1965 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c203t-bd93800c136dd3a7d112a1c89156f07d033d75d79c839d9c60778429cf1b5d503</citedby><cites>FETCH-LOGICAL-c203t-bd93800c136dd3a7d112a1c89156f07d033d75d79c839d9c60778429cf1b5d503</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2946405$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2946405$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,3184,27923,27924,58016,58020,58249,58253</link.rule.ids></links><search><creatorcontrib>Lees, Lester</creatorcontrib><title>Kinetic Theory Description of Rarefied Gas Flow</title><title>Journal of the Society for Industrial and Applied Mathematics</title><description>In an early paper with H. Bolza and Max Born, von Karman examined the relation between the "collision-dominated" and "collision-free" regimes in the simple case of steady flow or steady heat conduction through a porous medium. Von Karman also formulated the boundary condition at a gas-solid interface, and showed that the temperature "jump" arises quite naturally from the two-sidedness of the velocity distribution function, independently of any statements about the thermal accommodation coefficient. We reexamine this question of the transition between gas-kinetics and gasdynamics with the aid of the Maxwell moment method, utilizing a two-sided Maxwellian-type distribution as weighting function. The main features deduced from this approach are illustrated by considering two simple examples: (1) steady heat conduction between two concentric cylinders, and between two concentric spheres; (2) the "signaling problem" generated by the sudden motion and heating of an infinite flat plate.</description><subject>Boundary conditions</subject><subject>Cylinders</subject><subject>Flow velocity</subject><subject>Fluid mechanics</subject><subject>Gas flow</subject><subject>Gases</subject><subject>Heat</subject><subject>Heat flux</subject><subject>Heat transfer</subject><subject>Kinetic theory</subject><subject>Rarefied gases</subject><subject>Shear stress</subject><subject>Spheres</subject><subject>Temperature</subject><subject>Velocity</subject><subject>Wave fronts</subject><subject>Weighting functions</subject><issn>0368-4245</issn><issn>0036-1399</issn><issn>2168-3484</issn><issn>1095-712X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1965</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNo90FFLwzAQB_AgCtYpfgEfii8-1d3lkiZ5lOmmOBBkPpcuSbFlLjPpkH17Kx2-3N3Dj7vjz9g1wj0iqSkMFVCdsIxjqQsSWpyyDGiYBRfynF2k1AGAQi4zNn1tt75vbb769CEe8kefbGx3fRu2eWjy9zr6pvUuX9Qpn2_CzyU7a-pN8lfHPmEf86fV7LlYvi1eZg_LwnKgvlg7QxrAIpXOUa0cIq_RaoOybEA5IHJKOmWsJuOMLUEpLbixDa6lk0ATdjvu3cXwvfepr7qwj9vhZGVQ8xI14YDuRmRjSGn4tNrF9quOhwqh-gujOoYxyJtRdqkP8Z9xI0oBkn4BPk1XAg</recordid><startdate>19650301</startdate><enddate>19650301</enddate><creator>Lees, Lester</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>U9A</scope></search><sort><creationdate>19650301</creationdate><title>Kinetic Theory Description of Rarefied Gas Flow</title><author>Lees, Lester</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c203t-bd93800c136dd3a7d112a1c89156f07d033d75d79c839d9c60778429cf1b5d503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1965</creationdate><topic>Boundary conditions</topic><topic>Cylinders</topic><topic>Flow velocity</topic><topic>Fluid mechanics</topic><topic>Gas flow</topic><topic>Gases</topic><topic>Heat</topic><topic>Heat flux</topic><topic>Heat transfer</topic><topic>Kinetic theory</topic><topic>Rarefied gases</topic><topic>Shear stress</topic><topic>Spheres</topic><topic>Temperature</topic><topic>Velocity</topic><topic>Wave fronts</topic><topic>Weighting functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lees, Lester</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career & Technical Education Database</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of the Society for Industrial and Applied Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lees, Lester</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kinetic Theory Description of Rarefied Gas Flow</atitle><jtitle>Journal of the Society for Industrial and Applied Mathematics</jtitle><date>1965-03-01</date><risdate>1965</risdate><volume>13</volume><issue>1</issue><spage>278</spage><epage>311</epage><pages>278-311</pages><issn>0368-4245</issn><issn>0036-1399</issn><eissn>2168-3484</eissn><eissn>1095-712X</eissn><abstract>In an early paper with H. Bolza and Max Born, von Karman examined the relation between the "collision-dominated" and "collision-free" regimes in the simple case of steady flow or steady heat conduction through a porous medium. Von Karman also formulated the boundary condition at a gas-solid interface, and showed that the temperature "jump" arises quite naturally from the two-sidedness of the velocity distribution function, independently of any statements about the thermal accommodation coefficient. We reexamine this question of the transition between gas-kinetics and gasdynamics with the aid of the Maxwell moment method, utilizing a two-sided Maxwellian-type distribution as weighting function. The main features deduced from this approach are illustrated by considering two simple examples: (1) steady heat conduction between two concentric cylinders, and between two concentric spheres; (2) the "signaling problem" generated by the sudden motion and heating of an infinite flat plate.</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/0113017</doi><tpages>34</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0368-4245 |
ispartof | Journal of the Society for Industrial and Applied Mathematics, 1965-03, Vol.13 (1), p.278-311 |
issn | 0368-4245 0036-1399 2168-3484 1095-712X |
language | eng |
recordid | cdi_proquest_journals_918261831 |
source | JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; LOCUS - SIAM's Online Journal Archive |
subjects | Boundary conditions Cylinders Flow velocity Fluid mechanics Gas flow Gases Heat Heat flux Heat transfer Kinetic theory Rarefied gases Shear stress Spheres Temperature Velocity Wave fronts Weighting functions |
title | Kinetic Theory Description of Rarefied Gas Flow |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T00%3A37%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kinetic%20Theory%20Description%20of%20Rarefied%20Gas%20Flow&rft.jtitle=Journal%20of%20the%20Society%20for%20Industrial%20and%20Applied%20Mathematics&rft.au=Lees,%20Lester&rft.date=1965-03-01&rft.volume=13&rft.issue=1&rft.spage=278&rft.epage=311&rft.pages=278-311&rft.issn=0368-4245&rft.eissn=2168-3484&rft_id=info:doi/10.1137/0113017&rft_dat=%3Cjstor_proqu%3E2946405%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=918261831&rft_id=info:pmid/&rft_jstor_id=2946405&rfr_iscdi=true |