Fuzzy controller for mechanical systems

In many applications of motion control, the occurrence of nonlinear friction constitutes a fundamental obstacle in the design of satisfactory controlling systems. Since it is seldom possible to obtain a relatively accurate model of resistance to motion, a solution more and more often applied in prac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on fuzzy systems 2000-10, Vol.8 (5), p.645-652
1. Verfasser: Kulczycki, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 652
container_issue 5
container_start_page 645
container_title IEEE transactions on fuzzy systems
container_volume 8
creator Kulczycki, P.
description In many applications of motion control, the occurrence of nonlinear friction constitutes a fundamental obstacle in the design of satisfactory controlling systems. Since it is seldom possible to obtain a relatively accurate model of resistance to motion, a solution more and more often applied in practice is to introduce approaches that incorporate the inevitable imprecisions of the model in the form of uncertainties. This paper deals with the time-optimal (minimum-time) control for mechanical systems with a discontinuous and uncertain model of resistance to motion, A fuzzy approach is used in the design of suboptimal feedback controllers, convenient in practice thanks to their many advantages, especially in respect to robustness.
doi_str_mv 10.1109/91.873587
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_917728858</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>873587</ieee_id><sourcerecordid>2570073361</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-6a4ef627e178871eb16b8df13bd60391ed6e4b4b70f8243c4e948cc6e2856dc83</originalsourceid><addsrcrecordid>eNp90D1PwzAQBmALgUQJDKxMEQMfQ4rPdmxnrCoKSJVYYLYS5yJSJXGxk6H99aRKxcDAdCfdozvdS8g10DkAzZ4ymGvFU61OyAwyAQmlXJyOPZU8kYrKc3IRwoZSECnoGblfDfv9Lrau671rGvRx5Xzcov3Ku9rmTRx2occ2XJKzKm8CXh1rRD5Xzx_L12T9_vK2XKwTyxXrE5kLrCRTCEprBViALHRZAS9KSXkGWEoUhSgUrTQT3ArMhLZWItOpLK3mEbmb9m69-x4w9Katg8WmyTt0QzBMc5rS8amIPPwLQSpgSqRCjPT2D924wXfjGyYDpZjW6eHw44SsdyF4rMzW123udwaoOUQ7WjNFO9qbydaI-OuOwx99lXFk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>917728858</pqid></control><display><type>article</type><title>Fuzzy controller for mechanical systems</title><source>IEEE Electronic Library (IEL)</source><creator>Kulczycki, P.</creator><creatorcontrib>Kulczycki, P.</creatorcontrib><description>In many applications of motion control, the occurrence of nonlinear friction constitutes a fundamental obstacle in the design of satisfactory controlling systems. Since it is seldom possible to obtain a relatively accurate model of resistance to motion, a solution more and more often applied in practice is to introduce approaches that incorporate the inevitable imprecisions of the model in the form of uncertainties. This paper deals with the time-optimal (minimum-time) control for mechanical systems with a discontinuous and uncertain model of resistance to motion, A fuzzy approach is used in the design of suboptimal feedback controllers, convenient in practice thanks to their many advantages, especially in respect to robustness.</description><identifier>ISSN: 1063-6706</identifier><identifier>EISSN: 1941-0034</identifier><identifier>DOI: 10.1109/91.873587</identifier><identifier>CODEN: IEFSEV</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptive control ; Control system synthesis ; Control systems ; Controllers ; Design engineering ; Feedback ; Friction ; Fuzzy ; Fuzzy control ; Fuzzy systems ; Mechanical systems ; Motion control ; Nonlinear control systems ; Obstacles ; Uncertainty</subject><ispartof>IEEE transactions on fuzzy systems, 2000-10, Vol.8 (5), p.645-652</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2000</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-6a4ef627e178871eb16b8df13bd60391ed6e4b4b70f8243c4e948cc6e2856dc83</citedby><cites>FETCH-LOGICAL-c372t-6a4ef627e178871eb16b8df13bd60391ed6e4b4b70f8243c4e948cc6e2856dc83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/873587$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/873587$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kulczycki, P.</creatorcontrib><title>Fuzzy controller for mechanical systems</title><title>IEEE transactions on fuzzy systems</title><addtitle>TFUZZ</addtitle><description>In many applications of motion control, the occurrence of nonlinear friction constitutes a fundamental obstacle in the design of satisfactory controlling systems. Since it is seldom possible to obtain a relatively accurate model of resistance to motion, a solution more and more often applied in practice is to introduce approaches that incorporate the inevitable imprecisions of the model in the form of uncertainties. This paper deals with the time-optimal (minimum-time) control for mechanical systems with a discontinuous and uncertain model of resistance to motion, A fuzzy approach is used in the design of suboptimal feedback controllers, convenient in practice thanks to their many advantages, especially in respect to robustness.</description><subject>Adaptive control</subject><subject>Control system synthesis</subject><subject>Control systems</subject><subject>Controllers</subject><subject>Design engineering</subject><subject>Feedback</subject><subject>Friction</subject><subject>Fuzzy</subject><subject>Fuzzy control</subject><subject>Fuzzy systems</subject><subject>Mechanical systems</subject><subject>Motion control</subject><subject>Nonlinear control systems</subject><subject>Obstacles</subject><subject>Uncertainty</subject><issn>1063-6706</issn><issn>1941-0034</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp90D1PwzAQBmALgUQJDKxMEQMfQ4rPdmxnrCoKSJVYYLYS5yJSJXGxk6H99aRKxcDAdCfdozvdS8g10DkAzZ4ymGvFU61OyAwyAQmlXJyOPZU8kYrKc3IRwoZSECnoGblfDfv9Lrau671rGvRx5Xzcov3Ku9rmTRx2occ2XJKzKm8CXh1rRD5Xzx_L12T9_vK2XKwTyxXrE5kLrCRTCEprBViALHRZAS9KSXkGWEoUhSgUrTQT3ArMhLZWItOpLK3mEbmb9m69-x4w9Katg8WmyTt0QzBMc5rS8amIPPwLQSpgSqRCjPT2D924wXfjGyYDpZjW6eHw44SsdyF4rMzW123udwaoOUQ7WjNFO9qbydaI-OuOwx99lXFk</recordid><startdate>20001001</startdate><enddate>20001001</enddate><creator>Kulczycki, P.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7SP</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20001001</creationdate><title>Fuzzy controller for mechanical systems</title><author>Kulczycki, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-6a4ef627e178871eb16b8df13bd60391ed6e4b4b70f8243c4e948cc6e2856dc83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Adaptive control</topic><topic>Control system synthesis</topic><topic>Control systems</topic><topic>Controllers</topic><topic>Design engineering</topic><topic>Feedback</topic><topic>Friction</topic><topic>Fuzzy</topic><topic>Fuzzy control</topic><topic>Fuzzy systems</topic><topic>Mechanical systems</topic><topic>Motion control</topic><topic>Nonlinear control systems</topic><topic>Obstacles</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kulczycki, P.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on fuzzy systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kulczycki, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fuzzy controller for mechanical systems</atitle><jtitle>IEEE transactions on fuzzy systems</jtitle><stitle>TFUZZ</stitle><date>2000-10-01</date><risdate>2000</risdate><volume>8</volume><issue>5</issue><spage>645</spage><epage>652</epage><pages>645-652</pages><issn>1063-6706</issn><eissn>1941-0034</eissn><coden>IEFSEV</coden><abstract>In many applications of motion control, the occurrence of nonlinear friction constitutes a fundamental obstacle in the design of satisfactory controlling systems. Since it is seldom possible to obtain a relatively accurate model of resistance to motion, a solution more and more often applied in practice is to introduce approaches that incorporate the inevitable imprecisions of the model in the form of uncertainties. This paper deals with the time-optimal (minimum-time) control for mechanical systems with a discontinuous and uncertain model of resistance to motion, A fuzzy approach is used in the design of suboptimal feedback controllers, convenient in practice thanks to their many advantages, especially in respect to robustness.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/91.873587</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-6706
ispartof IEEE transactions on fuzzy systems, 2000-10, Vol.8 (5), p.645-652
issn 1063-6706
1941-0034
language eng
recordid cdi_proquest_journals_917728858
source IEEE Electronic Library (IEL)
subjects Adaptive control
Control system synthesis
Control systems
Controllers
Design engineering
Feedback
Friction
Fuzzy
Fuzzy control
Fuzzy systems
Mechanical systems
Motion control
Nonlinear control systems
Obstacles
Uncertainty
title Fuzzy controller for mechanical systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T22%3A34%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fuzzy%20controller%20for%20mechanical%20systems&rft.jtitle=IEEE%20transactions%20on%20fuzzy%20systems&rft.au=Kulczycki,%20P.&rft.date=2000-10-01&rft.volume=8&rft.issue=5&rft.spage=645&rft.epage=652&rft.pages=645-652&rft.issn=1063-6706&rft.eissn=1941-0034&rft.coden=IEFSEV&rft_id=info:doi/10.1109/91.873587&rft_dat=%3Cproquest_RIE%3E2570073361%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=917728858&rft_id=info:pmid/&rft_ieee_id=873587&rfr_iscdi=true